

DAIKIN

Каталог

Центральные системы кондиционирования Chiller, Fancoil, AHU, Altherma

2013

СОДЕРЖАНИЕ

гехнол	югические решения	
Спирал	іьный компрессор	5
Однови	интовой компрессор	Ε
Модель	ьный ряд чиллеров и охладителей	
Мини-ч	иллеры с воздушным охлаждением конденсатора	
NEW	EWAQ-AD, EWAQ-AC	
NEW	EWYQ-AD, EWYQ-AC	
Чиллер	ры с воздушным охлаждением конденсатора	
	EUWA*-KBZW	10
	EUWY*-KBZW	11
	EWAQ-BA* EWYQ-BA*	12
	EWAQ-DAYNN	13
	EWYQ-DAYNN	14
NEW	EWAQ-E-XS/XL/XR	15
NEW	EWAQ-F-SS/SL/SR	16
NEW	EWAQ-F-XS/XL/XR	17
	EWAD-E-SS/SL	18
	EWAD-BZSS/SL/XS/XL/XR	19
	EWYD-BZSS	20
	EWYD-BZSL	21
	EWAD-C-SS/SL/SR	22
	EWAD-C-XS/XL/XR	23
	EWAD-C-PS/PL/PR	24
	EWAD-CFXS/XL/XR	25
	EWAD-CZXS/XL/XR	26
	EWAD-D-SS/SL/SR/SX	27
	EWAD-D-XS/XR	28
	EWAD-D-HS	30
Чиллер	ры с водяным охлаждением конденсатора	
	EWWD-G-SS	31
	EWWD-G-XS	32
	EWWD-H-XS	33
	EWWD-I-SS	32
	EWWD-I-XS	35
	EWWD-J-SS	36
	EWWQ-B-SS	
	EWWQ-B-XS	38
Чиллер	ры с водяным охлаждением конденсатора / с выносным конденсатором	
	EWLD-G-SS	
	EWLD-J-SS	
	EWLD-I-SS	
	EWWP-KBW1N EWLP-KBW1N	
	EWWD-FZXS	
	DWME	
	DWSC/DWDC	46
Компре	ессорно-конденсаторный блок	
	ERAD-E-SS/SL	
	ERQ-A	48
Центра	альные кондиционеры	
	D-AHU Professional	
	D-AHU Easy	
NEW	D-AHU Energy	53

Фанкойлы FWB-BT. 56 **NEW** FWE-CT/CF... 57 FWD-AT/AF... 58 FWM-DT/DF. 59 FWV-DT/DF. FWL-DT/DF... 61 **NEW FWT-CT...** 62 FWF-BT/BF 63 FWF-CT 64 FWC-BT/BF... 65 Гидравлический модуль/Буферный бак EHMC/EKBT . 66 Высокоэффективная система Altherma Split, низкотемпературное исполнение 68 Моноблок, низкотемпературное исполнение 70 Split, высокотемпературное исполнение 73 Высокотемпературное исполнение, для многоквартирных домов 76 Опции для чиллеров 78 Опции для фанкойлов 80 Общие сведения 84 Номенклатура климатической техники Daikin 84

ЧИЛЛЕРЫ И ФАНКОЙЛЫ

Точное поддержание и регулирование параметров микроклимата жизненно необходимо для довольно широкого круга объектов — от жилых, общественных и административных зданий до промышленных предприятий. Чтобы реализовать эту цель, корпорация Daikin предлагает чиллеры различной производительности трех конструктивных исполнений: с воздушным охлаждением конденсатора, с водяным охлаждением конденсатора и с выносным конденсатором. Применение специальных холодильных станций позволяет создать идеальный микроклимат в помещениях как с малой, так и с очень большой площадью кондиционирования.

В чиллерах корпорации Daikin используются самые передовые технологии, которые обеспечивают не только высокую энергоэффективность, но и позволяют сделать их компактными и удобными при монтаже и эксплуатации. Удобство при эксплуатации проявляется прежде всего в точном поддержании температуры хладоносителя при переменной тепловой нагрузке. Именно поэтому они находят применение в различных отраслях, например, в рыбной промышленности, при производстве вин, на морском транспорте, в сельском хозяйстве, в фармацевтической промышленности и в других разнообразных технологических процессах. Комбинации чиллеров с центральными кондиционерами и фанкойлами Daikin являются идеальными для создания систем кондиционирования коттеджей, офисов, отелей, ресторанов и различных жилых помещений.

В настоящее время Daikin предлагает модельные ряды чиллеров, специально оптимизированных для работы на озонобезопасных хладагентах R-134a, R-407C, R-410A. Все компоненты чиллера — испаритель, конденсатор, компрессор, а также применяемое масло — специально разработаны для использования сэтими хладагентами. Такое высокотехнологичное, надежное и энергоэффективное оборудование Daikin полностью удовлетворяет требованиям EUROVENT.

Умелое объединение передовых технологий с высочайшей надежностью и энергоэффективностью, по мнению многих профессионалов, позволяет считать оборудование Daikin одним из лучших в мире.

ТЕХНОЛОГИЧЕСКИЕ РЕШЕНИЯ

Спиральный компрессор

Важнейшие свойства компрессоров

- компактность, простота и высокая надежность;
- низкий уровень шума;
- низкий пусковой ток.

Чиллеры малой производительности, выпускаемые компанией Daikin, оборудованы герметичными компрессорами спирального типа.

Они также разработаны и производятся на предприятиях компании, что гарантирует их высокие характеристики и простоту обслуживания.

Компрессоры этого типа обладают высокой надежностью и эффективностью при длительном сроке бесперебойной работы.

Эти компрессоры рассчитаны на работу с озонобезопасными хладагентами.

В агрегатах малой холодопроизводительности впервые применены озонобезопасный хладагент R-410A и инверторный привод компрессора.

Одновинтовой компрессор

Сердцем больших чиллеров, производимых компанией Daikin, является полугерметичный одновинтовой компрессор, сконструированный и прошедший испытания в собственных лабораториях компании. Собственные разработки и производство определяют уникальное сочетание характеристик этого компрессора.

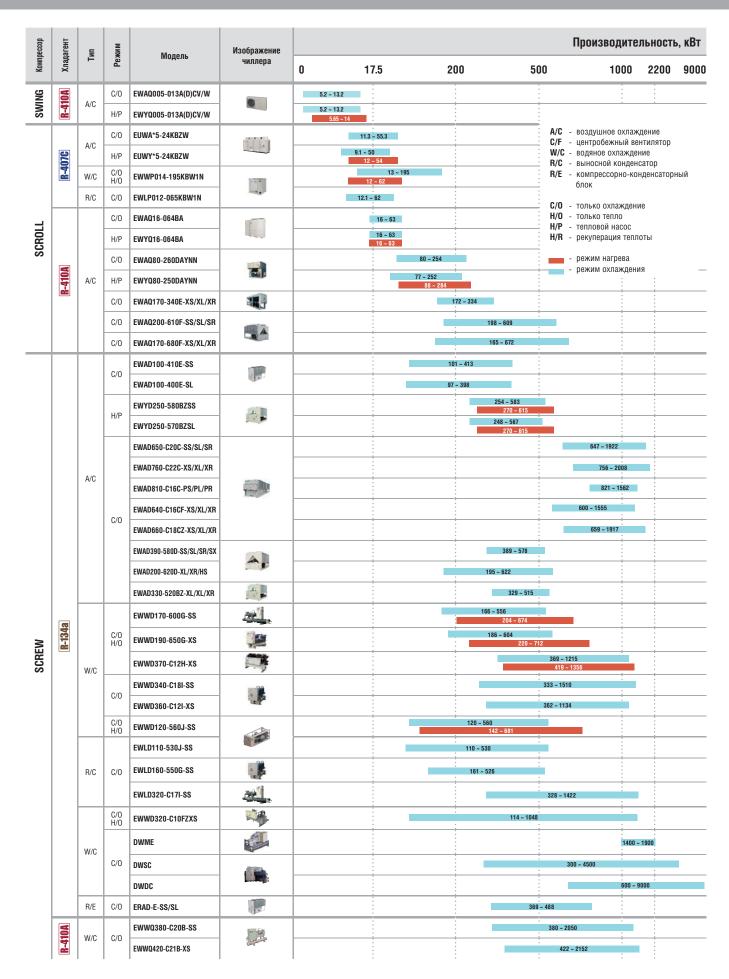
Всасывающий патрубок Соединительные электрические разъемы Электродвигатель Нагнетательный патрубок хладагента Последняя разработка компании – высокоэффективный сепаратор масла и эффективная система возврата Звездные роторы с уплотнительными масла, улучшающая эксплуатацию элементами из полимерного материала компрессора обеспечивают оптимальные рабочие характеристики и гарантируют долгий срок службы Регулирующий клапан,

> обеспечивающий плавное и надежное управление производительностью компрессора

Уникальные особенности конструкции:

- компактность, простота и высокая надежность;
- плавное регулирование производительности в широком диапазоне;
- отсутствие деталей, совершающих возвратно-поступательное движение, что обеспечивает высокую эффективность и повышает надежность системы;
- крайне низкие нагрузки, испытываемые подшипниками, тщательная осевая и радиальная балансировка при симметричной нагрузке;
- высокопрочный полимерный материал уплотнений звездных роторов, снижающий потери на трение, обладающий высокой износостойкостью и экономичностью:
- отсутствие специального масляного насоса: охлаждение и уплотнение винта компрессора обеспечивается подводом жидкого хладагента, благодаря чему достигаются постоянная температура деталей на протяжении всего длительного срока службы, минимальный размер зазоров и, следовательно, высокая эффективность;
- крайне низкий уровень вибраций, гарантирующий минимальный износ рабочих поверхностей и низкий уровень шума работающего компрессора.

Следствия уникальных технологических решений:


- высокая надежность и длительный срок бесперебойной работы;
- первая ревизия и диагностика компрессора необходимы не ранее чем через 40 000 часов непрерывной работы.

Дополнительные преимущества:

- запорный клапан на выходе хладагента, входящий в стандартную комплектацию;
- легкость доступа к компрессору и защитным устройствам;
- входящее в стандартную комплектацию пусковое устройство, обеспечивающее низкое значение пускового тока.

МОДЕЛЬНЫЙ РЯД ЧИЛЛЕРОВ И ОХЛАДИТЕЛЕЙ

EWAQ-AD, EWAQ-AC

Мини-чиллеры с воздушным охлаждением конденсатора

в комплекте

- EWAQ-AD, EWAQ-AC
- Инверторная технология обеспечивает: постоянное соответствие требуемой нагрузке, отличную эффективность при частичной нагрузке, значительное уменьшение пускового тока, точное регулирование температуры воды на выходе из испарителя.
- Надежные и экономичные компрессоры Daikin с инверторным управлением, адаптированные под работу с озонобезопасным хладагентом R-410A:

Swing - модели 005, 006, 007

Scroll - модели 009, 010, 011, 013

• Модели предназначены для работы в режиме только охлаждение.

- Низкий уровень шума (от 48 дБА).
- Стандартная поставка с гидравлической группой.
- Простота монтажа и удобство обслуживания.
- Широкий рабочий диапазон температур наружного воздуха:
- режим охлаждения от 10 до 46 °C (по сухому термометру);
- режим нагрева от -15 до 23 °C (по влажному термометру).
- Включен источник однофазного электропитания и главный выключатель.

ТОЛЬКО ОХЛАЖДЕНИЕ

модель		EWAQ005ADV	EWAQ006ADV	EWAQ007ADV							
Номинальная производительность*	кВт	5.2	6.0	7.1							
Потребляемая мощность*	кВт	1.89	2.35	2.95							
Коэффициент EER*		2.75	2.55	2.41							
Коэффициент ESEER			•								
Габариты (ВхШхГ)	MM 805x1190x360										
Вес агрегата (сухой)	КГ		100								
Уровень звуковой мощности	дБА	62	62	63							
Рабочий диапазон температур – по воздуху (охл. / нагр.)	°C		10~43 °C								
Рабочий диапазон температур – по воде (охл. / нагр.)	°C		5~20 °C								
Хладагент			R-410A								
Параметры электропитания			1~, 230В, 50 Гц								
Размеры водяных патрубков входа / выхода			1" MBSP								

^{*} Данные указаны для следующих условий:

охлаждение: температура наружного воздуха 35°C - температура воды на выходе из испарителя 7 °C (∆t=5 °C)

ТОЛЬКО ОХЛАЖДЕНИЕ

модель		EWAQ009ACV	EWAQ010ACV	EWAQ011ACV	EWAQ009ACW1	EWAQ011ACW1	EWAQ013ACW1			
Номинальная производительность (1/2)**	кВт	12.2 / 8.6	13.6 / 9.6	15.7 / 11.1	12.9 / 9.1	15.7 / 11.1	17.0 / 13.3			
Потребляемая мощность (1/2)**	кВт	2.85 / 2.83	3.41 / 3.28	4.13 / 3.90	3.08 / 3.05	4.13 / 3.90	5.52 / 5.18			
Коэффициент EER (1/2)**		4.27 / 3.05	4.00 / 2.93	3.79 / 2.85	4.19 / 2.99	3.79 / 2.85	3.08 / 2.57			
Коэффициент ESEER		4.31	4.3	4.33	4.43	4.44	4.36			
Габариты (ВхШхГ)	MM			1435x1	418x382					
Вес агрегата (сухой)	КГ			1	80					
Уровень звуковой мощности	дБА	64	64	64	64	64	66			
Рабочий диапазон температур – по воздуху (охл. / нагр.)	°C		10~46 °C			10~46 °C				
Рабочий диапазон температур – по воде (охл. / нагр.)	℃		5~22 °C			5~22 °C				
Хладагент		R-410A								
Параметры электропитания			1~, 230В, 50 Гц			3~, 400В, 50 Гц				
Размеры водяных патрубков входа / выхода				G 5/4" (с внутр	(с внутренней нарезкой)					

Размеры водяных патрубков входа / выхода ** Данные указаны для следующих условий:

Оклаждение: температура наружного воздуха 35 °C - температура воды на входе из испарителя 18 °C (∆t=5 °C);

Нагрев: температура наружного воздуха по сухому/влажному термометру 7 °C/6 °C - температура воды на выходе из конденсатора
36 °C (∆t=5 °C)

Охлаждение: температура наружного воздуха 35 °C - температура воды на входе из испарителя 7 °C (∆L=5 °C); Нагрев: температура наружного воздуха по сухому/влажному термометру 7 °C/6 °C - температура воды на выходе из конденсатора 45 °C (∆L=5 °C)

^{1.} Условия для теплых полов:

^{2.} Условия для фанкойлов:

EWYQ-AD, EWYQ-AC

Мини-чиллеры с воздушным охлаждением конденсатора

в комплекте

- EWYQ-AD, EWYQ-AC
- Инверторная технология обеспечивает: постоянное соответствие требуемой нагрузке, отличную эффективность при частичной нагрузке, значительное уменьшение пускового тока, точное регулирование температуры воды на выходе из испарителя.
- Модели предназначены для работы в режимах охлаждения и нагрева.
- Надежные и экономичные компрессоры Daikin с инверторным управлением, адаптированные под работу с озонобезопасным хладагентом R-410A:
 - Swing модели 005, 006, 007 Scroll – модели 009, 010, 011, 013

- Низкий уровень шума (от 48 дБА).
- Стандартная поставка с гидравлической группой.
- Простота монтажа и удобство обслуживания.
- Широкий рабочий диапазон температур наружного воздуха:
- режим охлаждения от 10 до 46 °C (по сухому термометру);
- режим нагрева от -15 до 23 $^{\circ}$ С (по влажному термометру).

ОХЛАЖДЕНИЕ / НАГРЕВ

модель			EWYQ005ADV	EWYQ006ADV	EWYQ007ADV							
	охлаждение	кВт	5.2	6.0	7.1							
Номинальная производительность*	нагрев	кВт	6.1 / 5.7	6.8 / 6.4	8.2 / 7.8							
	охлаждение	кВт	1.89	2.35	2.95							
Потребляемая мощность*	нагрев	кВт	1.60 / 1.97	1.84 / 2.24	2.36 / 2.83							
Коэффициент EER*			2.75	2.55	2.41							
Коэффициент СОР			3.81 / 2.87	3.70 / 2.83	3.47 / 2.74							
Коэффициент ESEER (охлаждение)												
Габариты (ВхШхГ)		MM	805x1190x360									
Вес агрегата (сухой)		КГ		100								
Уровень звуковой мощности		дБА	62	62	63							
Рабочий диапазон температур – по воздуху (охл.	. / нагр.)	°C		10~43°C / 15~25°C								
Рабочий диапазон температур – по воде (охл. / н	агр.)	°C	5~20°C / 25~50°C									
Хладагент		·	R-410A									
Параметры электропитания			1~, 230 В, 50 Гц									
Размеры водяных патрубков входа / выхода				1" MBSP								

^{*} Номинальная производительность указана для следующих условий:

охлаждение: температура наружного воздуха 35 °C - температура воды на выходе из испарителя 7 °C (Δt =5 °C);

нагрев: температура наружного воздуха по сухому/влажному термометру 7 °C/6 °C - температура воды на выходе из конденсатора 35 °C (Δ1=5 °C) / температура наружного воздуха по сухому/влажному термометру 7 °C/6 °C - температура воды на выходе из конденсатора 45 °C (Δ1=5 °C) / температура наружного воздуха по сухому/влажному термометру 7 °C/6 °C - температура воды на выходе из конденсатора 45 °C (Δ1=5 °C) / температура наружного воздуха по сухому/влажному термометру 7 °C/6 °C - температура воды на выходе из конденсатора 45 °C (Δ1=5 °C) / температура наружного воздуха по сухому/влажному термометру 7 °C/6 °C - температура воды на выходе из конденсатора 45 °C (Δ1=5 °C) / температура наружного воздуха по сухому/влажному термометру 7 °C/6 °C - температура воды на выходе из конденсатора 45 °C (Δ1=5 °C) / температура наружного воздуха по сухому/влажному термометру 7 °C/6 °C - температура воды на выходе из конденсатора 45 °C (Δ1=5 °C) / температура наружного воздуха по сухому/влажному термометру 7 °C/6 °C - температура воды на выходе из конденсатора 45 °C (Δ1=5 °C) / температура наружного воздуха по сухому/влажному термометру 7 °C/6 °C - температура воды на выходе из конденсатора (С1=5 °C) / температура наружного воздуха по сухому/влажному температура (С1=5 °C) / температура наружного воздуха по сухому в температура (С1=5 °C) / температура

ОХЛАЖДЕНИЕ / НАГРЕВ

модель			EWYQ009ACV3	EWYQ009ACV3	EWYQ011ACV3	EWYQ009ACW1	EWYQ011ACW1	EWYQ013ACW1
[1]	охлаждение	кВт	12.1 / 8.6	13.6 / 9.6	15.7 / 11.1	12.9 / 9.1	15.7 / 11.1	17.0 / 13.3
Номинальная производительность (1/2)**	нагрев	кВт	10.2 / 9.9	11.7 / 11.4	13.8 / 12.9	11.2 / 10.9	13.2 / 12.4	14.8 / 13.9
F(4/0)**	охлаждение	кВт	2.85 / 2.83	3.41 / 3.28	4.13 / 3.90	3.08 / 3.05	4.13 / 3.90	5.52 / 5.18
Потребляемая мощность (1/2)**	нагрев	кВт	2.43 / 2.99	2.81 / 3.46	3.20 / 3.94	2.69 / 3.31	3.07 / 3.78	3.47 / 4.27
Коэффициент EER (1/2)**			4.27 / 3.05	4.00 / 2.93	3.79 / 2.85	4.19 / 2.99	3.79 / 2.85	3.08 / 2.57
Коэффициент СОР (1/2)**			4.19 / 3.30	4.17 / 3.29	4.30 / 3.27	4.17 / 3.28	4.31 / 3.27	4.28 / 3.25
Коэффициент ESEER (охлаждение)			4.31	4.30	4.33	4.43	4.44	4.36
Габариты (ВхШхГ)		MM			1435x1	418x382		
Вес агрегата (сухой)		КГ			1	80		
Уровень звуковой мощности		дБА	64	64	64	64	64	66
Рабочий диапазон температур – по воздуху (охл. /	нагр.)	°C			10~46°C	/ -15~35°C		
Рабочий диапазон температур – по воде (охл. / на	rp.)	°C			5~22°C	/ 25~50°C		
Хладагент R-410A								
Параметры электропитания				1~, 230 В, 50 Гц			3~, 400 В, 50 Гц	
Размеры водяных патрубков входа / выхода				G 5/4" (с внутренней нарезкой	i)		G 5/4" (с внутренней нарезкой)

^{**} Данные указаны для следующих условий:

Охлаждение: температура наружного воздуха 35 °C - температура воды на входе из испарителя 18 °C ($\Delta t = 5$ °C); Harpes: температура наружного воздуха по сухому/влажному термометру 7 °C/6 °C - температура воды на выходе из конденсатора 35 °C ($\Delta t = 5$ °C) 2. Условия для фанкойлов:

Охлаждение: температура наружного воздуха 35 °C - температура воды на входе из испарителя 7 °C (Δ I=5 °C); Нагрев: температура наружного воздуха по сухомувлажному термометру 7 °C/6 °C - температура воды на выходе из конденсатора 45 °C (Δ I=5 °C)

^{1.} Условия для теплых полов:

EUWA*-KBZW

Чиллеры с воздушным охлаждением конденсатора

μC 2 SE

R-407C

EUWAN16KBZW

- Компрессор Daikin спирального типа.
- Специальное исполнение компрессора и теплообменных аппаратов для оптимизации работы на озонобезопасном хладагенте R-407C.
- Низкий уровень шума.
- Электронный цифровой пульт управления.
- Высокая энергоэффективность.
- Высококачественное антикоррозийное покрытие деталей.
- Специальное покрытие оребрения воздушного теплообменника.
- Полная заводская заправка хладагентом и маслом.
- Испаритель компактный пластинчатый теплообменник.
- Небольшая занимаемая площадь.
- Простота монтажа и удобство обслуживания.
- Возможность поставки чиллера со встроенным гидромодулем.
- Возможность поставки с баком-аккумулятором до 200 л.
- В стандартной комплектации: главный выключатель, реле протока.
- Возможность дистанционного управления чиллером.
- Возможность интеграции с единой системой управления зданием (BMS).
- Новый пульт дистанционного управления EKRUMCA (максимальное удаление 1000 м).
- Интеграция в систему управления зданием по протоколу Modbus осуществляется напрямую при подключении к адресной карте EKAC10C без использования шлюзов.
- К проводному пульту дистанционного управления больше не требуется отдельно подводить питание.

EUWAN:

- Реле протока
- Сетчатый фильтр

EUWAP=EUWAN+

- Hacoc
- Расширительная емкость 12 л
- Балансировочный вентиль
- Дренажный вентиль
- Порты для измерения давления воды
- Предохранительный клапан

EUWAB=EUWAP+

• бак-аккумулятор

модель			EUW	/A*5KI	BZW	EUW	/A*8K	BZW	EUW	A*10K	BZW	EUW	A*12KE	3ZW	EUW	A*16K	(BZW	EUW	A*20KBZW	EUW	A*24KBZW
			N5	P5	B5	N8	P8	B8	N10	P10	B10	N12	P12	B12	N16	P16	B16	N20	P20 B20	N24	P24 B24
Холодопроизводительность		кВт	11.2	11.	.7	17.7	18	.2	22.3	22	2.9	26.2	26.8	}	34.4	35	5.4	46.4	47.5	55.0	56.1
Потребляемая мощность		кВт	4.56	4.5	9	7.44	7.3	39	8.87	8.	88	11.70	11.7	0	14.90	15	.10	18.10	18.20	24.10	24.20
Коэффициент EER (охлаждение)			2.46	2.5	5	2.38	2.4	46	2.51	2.	58	2.24	2.29)	2.31	2.	34	2.56	2.61	2.28	2.32
Габариты (ВхШхГ)		MM	123	30x1290x7	34	123	0x1290x	734	145	0x1290x	734	145	50x1290x73	34	132	21x2580x	734	154	1x2580x734	154	1x2580x734
Вес агрегата (сухой)		КГ	150	168	180	215	229	241	245	259	271	248	262	274	430	448	460	490	508 520	496	514 526
Номинальный статический напор	чиллер	кПа	-	20	9	-	12	28	-	10	38	-	105		-	24	40	-	195	-	158
Номинальное гидросопротивление испарителя		кПа		24			38			43			37			22			22		22
Объем расширительного бака		Л	-	12	2	-	1	2	-	1	2	-	12		-	1	12	-	12	-	12
Объем бака-аккумулятора		Л		-	55		-	55		-	55		-	55		-	55	-	- 55		- 55
Уровень звуковой мощности		дБА		67			76			78			78			79			81		81
Рабочий диапазон температур	по жидкости	°C									5	5 °C (-10	°С опция)	~ +25 °	С						
	по воздуху	°C										-15	°C ~ +43	°C							
(ладагент			R-407C																		
Электропитание В				3-, 400, 50 Гц																	
Размеры водяных патрубков входа / выхода			1-1/4" 1-1/4" 2"																		
Дренажный патрубок мм													15								

EUWY*-KBZW

Чиллеры с воздушным охлаждением конденсатора

μC 2 SE

EUWYN16KBZW

- Компрессор Daikin спирального типа.
- Специальное исполнение компрессора и теплообменных аппаратов для оптимизации работы на озонобезопасном хладагенте R-407C.
- Низкий уровень шума.
- Электронный цифровой пульт управления.
- Высокая энергоэффективность.
- Высококачественное антикоррозийное покрытие деталей.
- Специальное покрытие оребрения воздушного теплообменника.
- Полная заводская заправка хладагентом и маслом.
- Испаритель компактный пластинчатый теплообменник.
- Небольшая занимаемая площадь.
- Простота монтажа и удобство обслуживания.
- Возможность поставки чиллера со встроенным гидромодулем.
- \bullet Возможность поставки с баком-аккумулятором до 200 л.
- В стандартной комплектации: главный выключатель, реле протока.
- Возможность дистанционного управления чиллером.
- Возможность интеграции с единой системой управления зданием (BMS).
- Новый пульт дистанционного управления EKRUMCA (максимальное удаление 1000 м).
- К проводному пульту дистанционного управления не требуется отдельно подводить питание.

EUWYN:

- Реле протока
- Сетчатый фильтр

EUWYP = EUWYN +

- Hacoc
- Расширительная емкость 12 л
- Балансировочный вентиль
- Дренажный вентиль
- Порты для измерения давления воды
- Предохранительный клапан

EUWYB=EUWYP+

• бак-аккумулятор

ТЕПЛОВОЙ НАСОС

МОДЕЛЬ			EUW	Y*5KBZW	EUV	VY*8KE	3ZW	EUW	Y*10I	KBZW	EUW	Y*12K	BZW	EUW	Y*16k	(BZW	EUW	Y*20KBZW	EUW	Y*24KB2
			N5	P5 B5	N8	P8	B8	N10	P10	B10	N12	P12	B12	N16	P16	B16	N20	P20 B20	N24	P24 B
Номинальная производительность	охлаждение	кВт	9.1	9.4	17.0	17.	.5	20.8	2	21.5	24.8	25	.4	34.1	3	5.0	39.8	40.9	49.8	50.9
	нагрев	кВт	12.0	11.4	18.6	17.	.9	24.2	2	23.3	27.2	26	.0	37.1	3.	5.7	46.2	44.5	54.2	52.5
Потребляемая мощность	охлаждение	кВт	3.82	3.91	7.51	7.4	17	8.65	8	3.69	11.5	11	.5	14.9	18	5.2	16.4	16.6	22.8	22.9
	нагрев	кВт	4.62	4.52	7.14	6.8	88	9.14	8	3.98	10.9	10	.4	14.2	14	4.0	17.5	17.1	21.6	21.1
Коэффициент EER (охлаждение)			2.37	2.41	2.26	2.3	34	2.40	2	2.47	2.16	2.2	21	2.29	2.	.30	2.43	2.46	2.18	2.22
Коэффициент СОР (нагрев)			2.60	2.52	2.61	2.6	60	2.65	2	2.59	2.50	2.5	50	2.61	2.	.55	2.64	2.60	2.51	2.49
Габариты (ВхШхГ)		MM	123	30x1290x734	12	30x1290x7	'34	145	50x1290	x734	145	0x1290x	734	132	1x2580x	734	154	11x2580x734	15	11x2580x734
Вес агрегата (сухой)		КГ	163	181 193	227	241	253	258	272	284	258	272	284	455	473	485	516	534 546	516	534 5
Номинальный статический напор – чиллер	охлаждение	кПа	-	232	-	14	9	-	1	167	-	12	23	-	2	49	-	229	-	185
	нагрев	кПа	-	205	-	16	0	-	1	127	-	10	00	-	1	95	-	147	-	111
Номинальное гидросопротивление испарителя	охлаждение	кПа		10		25			24			33			12			12		19
	нагрев	кПа		17		29			31			38			14			16		22
Объем расширительного бака		л	-	12	-	12	2	-		12	-	1:	2	-	1	12	-	12	-	12
Объем бака-аккумулятора		Л		- 55		-	55		-	55		-	55			55		- 55		- 5
Уровень звуковой мощности		дБА		67		76			78			78			79			81		81
Рабочий температурный диапазон – по воде	охлаждение	°C									5 °C (-10	°C опция	a) ~ 25 °()						
	нагрев	°C									35	5°C ~ 50	°C							
Рабочий температурный диапазон – по воздуху	охлаждение	°C									-1	5 °C ~ 43	°C							
	нагрев	°C									-1	0 °C ~ 21	°C							
Хладагент												R-407C								
Электропитание		В									3~,	400 B, 5) Гц							
Размеры водяных патрубков входа / выхода				1-1	1/4"					1-1	/4"							2"		
Дренажный патрубок		MM										15								

EWAQ-BA* EWYQ-BA*

Чиллеры с воздушным охлаждением конденсатора

BRC21A52

- Чиллеры с инверторным приводом компрессоров.
- Доступны в двух исполнениях:
- EWA(Y)Q-BAWN стандартное исполнение;
- EWA(Y)Q-BAWP вариант со встроенным насосом.
- Высокая энергоэффективность при частичной нагрузке (ESEER до 4.75).
- Точное регулирование температуры воды на выходе из испарителя.
- Низкие пусковые токи, а также короткие сроки окупаемости.
- Семь классов моделей: 016, 021, 025, 032, 040, 050, 064 (от 16.8 до 63.0 кВт).
- Два варианта моделей: только холод и тепловой насос.
- Конструкция оптимизирована для работы с озонобезопасным хладагентом R-410A.
- Низкий уровень шума.
- Возможность установки стандартного или высоконапорного насоса на заводе.

ОХЛАЖДЕНИЕ / НАГРЕВ

модель			EWYQ	016BA*	EWYQ	021BA*	EWYQ	025BA*	EWYQ	032BA*	EWYQ	040BA*	EWYQ	050BA*	EWYQ	064BA*
Вариант исполнения			WN	WP	WN	WP	WN	WP	WN	WP	WN	WP	WN	WP	WN	WP
Номинальная производительность	охлаждение	кВт	17.4	16.6	21.7	20.7	25.8	24.7	32.3	30.9	43.4	41.5	51.8	49.7	64.5	62.3
	нагрев	кВт	16.2	17.0	20.3	21.3	24.6	25.7	30.7	32.1	40.6	42.5	49	51.1	61.5	63.7
Потребляемая мощность	охлаждение	кВт	5.6	5.8	7.25	7.59	9.29	9.74	13	13.5	14.7	15.4	18.8	19.7	26.4	27.4
	нагрев	кВт	5.53	5.73	7.1	7.44	8.91	9.36	10.6	11.1	14	14.7	17.6	18.5	20.7	21.7
Коэффициент EER	-				2.99	2.73	2.78	2.54	2.48	2.29	2.95	2.69	2.76	2.52	2.44	2.27
Коэффициент СОР	COP			2.97	2.86	2.86	2.76	2.75	2.9	2.89	2.9	2.89	2.78	2.76	2.97	2.94
Габариты (ВхШхГ)		MM			1684x1	371x774			1684x1	684x774		1684x2	358x780		1684x2	980x780
Вес агрегата (сухой)		КГ	2	64		3	17		3	97		5	71		7:	30
Уровень звуковой мощности		дБА			7	78			8	10		8	31		8	3
Рабочий диапазон температур – по воздуху (охл	ı. / нагр.)	°C							-5~43°C	/ -15~35°C						
Рабочий диапазон температур – по воде (охл. /	нагр.)	°C							5~20°C	/ 25~50°C						
Хладагент								R	410A							
Параметры электропитания	W1							3~, 400	В, 50 Гц							
азмеры водяных патрубков входа / выхода						1-	1/4"						1-1	1/2"		

модель			EWAQ	016BA*	EWAQ	021BA*	EWAQ)25BA*	EWAQ	032BA*	EWAQ	040BA*	EWAQ	050BA*	EWAQ	064BA*
Вариант исполнения			WN	WP	WN	WP	WN	WP	WN	WP	WN	WP	WN	WP	WN	WP
Холодопроизводительность		кВт	17.4	16.6	21.7	20.7	25.8	24.7	32.3	30.9	43.4					62.3
Потребляемая мощность		кВт	5.6	5.8	7.25	7.59	9.29	9.74	13.0	13.5	14.7	15.4	18.8	19.7	26.4	27.4
Коэффициент EER (охлаждение)			3.11	2.86	2.99	2.73	2.78	2.54	2.48	2.29	2.95 2.69 2.76 2.52 2.44				2.44	2.27
Габариты (ВхШхГ)		MM			1684x1	371x774			1684x1	684x774	1684x2358x780 1684x298				980x780	
Вес агрегата (сухой)		КГ	2	64		3	17		3	97		5	71		7	30
Уровень звуковой мощности		дБА				78			8	10		8	11		8	33
Рабочий диапазон температур	по жидкости	°C							-5~	43 °C						
	по воздуху	°C							5~2	20 °C						
Хладагент									R-4	410A						
Электропитание		В							3~,400	В,50 Гц						
Размеры водяных патрубков входа / выход	да					1-	1/4"				1-1/2"					

EWAQ-DAYNN

Чиллеры с воздушным охлаждением конденсатора

PCASO

EWAQ130-150DAYNN

- Широкий диапазон производительности от 80 до 260 кВт (ряд из 8 моделей чиллеров).
- Хладагент R-410A.
- Надежный спиральный компрессор.
- Высокое значение холодильного коэффициента при частичной загрузке.
- Алюминиевое антикоррозионное покрытие.
- Низкий уровень шума при работе.
- Простота монтажа.
- Простота перевозки благодаря малым габаритам.
- Вентиляторы защищены от перегрузок (4-8 вентиляторов в зависимости от размера блока).
- Паяный пластинчатый теплообменник-испаритель.
- Водяной контур можно подводить к чиллеру с трех сторон.
- Съемный контроллер для простоты доступа.

- Повышение надежности благодаря двум независимым контурам.
- Двухконтурный испаритель (производительность от 131 кВт).
- Новый контроллер Daikin (Pcaso) с простым в управлении жидкокристаллическим дисплеем.

Возможна опциональная установка следующих элементов гидравлического модуля:

- одинарный насос (OPSP);
- насос высокого статического напора (ОРНР);
- сдвоенный насос (ОРТР);
- буферный бак (ОРВТ).

Перед заказом этих опций необходимо предварительно произвести гидравлический расчет обвязки чиллера!

МОДЕЛЬ			EWAQ080DAYNN	EWAQ100DAYNN	EWAQ130DAYNN	EWAQ150DAYNN	EWAQ180DAYNN	EWAQ210DAYNN	EWAQ240DAYNN	EWAQ260DAYNN
Холодопроизводительность		кВт	79	104	130	151	181	208	234	252
Потребляемая мощность		кВт	27.0	36.9	47.4	57.2	65.6	75.9	84.4	95.8
Коэффициент EER			2.94	2.82	2.74	2.64	2.76	2.74	2.77	2.63
Уровень звукового давления		дБА	86.0	86.0	88.0	89.0	90.0	90.0	91.0	91.0
Компрессор						Спира	альный			
Количество				2		4	2	4	2	4
Хладагент						R-4	110A			
Число контуров				1				2		
Испаритель						Паяный пл	астинчатый			
Количество			1	1	1	1	1	1	1	1
Размер водяных патрубков входа/выхода		Дюйм	3	3	3	3	3	3	3	3
Вес агрегата (сухой)		КГ	1350	1400	1500	1550	1800	1850	3150	3250
Габариты	Длина	MM	2566	2566	2631	2631	3081	3081	4850	4850
•	Ширина	MM	2000	2000	2000	2000	2000	2000	2000	2000
	Высота	MM	2311	2311	2311	2311	2311	2311	2311	2311
Электропитание Y1 В 3-, 400 В, 50 Гц										

EWYQ-DAYNN

Чиллеры с воздушным охлаждением конденсатора

PCASO

EWYQ130DAYNN

- Широкий диапазон холодопроизводительности от 77 до 252 кВт (ряд из 8 моделей чиллеров).
- Хладагент R-410A.
- Надежный спиральный компрессор.
- Высокое значение холодильного коэффициента при частичной загрузке.
- Алюминиевое антикоррозийное покрытие.
- Низкий уровень шума при работе.
- Простота монтажа и удобство обслуживания.
- Простота перевозки благодаря малым габаритам.
- Вентиляторы защищены от перегрузок (4-8 вентиляторов в зависимости от размера блока).
- Паяный пластинчатый теплообменник-испаритель.
- Водяной контур можно подводить к чиллеру с трех сторон.
- Съемный контроллер для простоты доступа.
- Повышение надежности благодаря двум независимым контурам.

- Двухконтурный испаритель (производительность от 136 кВт).
- Новый контроллер Daikin (Pcaso) с простым в управлении жидко-кристаллическим дисплеем.

Возможна опциональная установка следующих элементов гидравлического модуля:

- одинарный насос (OPSP);
- насос высокого статического напора (ОРНР);
- сдвоенный насос (ОРТР);
- буферный бак (ОРВТ).

Перед заказом этих опций необходимо предварительно произвести гидравлический расчет обвязки чиллера!

ТЕПЛОВОЙ НАСОС

МОДЕЛЬ			EWYQ080DAYNN	EWYQ100DAYNN	EWYQ130DAYNN	EWYQ150DAYNN	EWYQ180DAYNN	EWYQ210DAYNN	EWYQ230DAYNN	EWYQ250DAYNN	
Холодопроизводительность		кВт	77	100	135	144	182	210	229	251	
Теплопроизводительность		кВт	88	115	150	166	200	227	260	283	
Потребляемая мощность (охлажден	ние)	кВт	26.8	36.7	48.4	56.5	64.8	76.5	83.6	95.1	
Потребляемая мощность (нагрев)		кВт	30.5	38.7	50.5	59.8	69.2	78.5	85.9	98.6	
Коэффициент EER			2.86	2.72	2.79	2.55	2.81	2.75	2.74	2.64	
Коэффициент СОР			2.89	2.99	2.97	2.78	2.89	2.89	3.03	2.87	
Уровень звукового давления		дБА	86.0	86.0	88.0	89.0	90.0	90.0	91.0	91.0	
Компрессор						Спир	альный				
Количество				2		4	2	4	2	4	
Хладагент						R-4	410A				
Число контуров				1				2			
Испаритель						Паяный пл	пастинчатый				
Количество			1	1	1	1	1	1	1	1	
Размер водяных патрубков входа/в	ыхода	Дюйм	3	3	3	3	3	3	3	3	
Вес агрегата (сухой)		КГ	1400	1450	1550	1600	1850	1900	3200	3300	
Габариты	Длина	MM	2566	2566	2631	2631	3081	3081	4850	4850	
	Ширина	MM	2000	2000	2000	2000	2000	2000	2000	2000	
	Высота	MM	2311 2311 2311 2311 2311 2311 2311 2311								
Электропитание Ү1		В				3~, 400) В, 50 Гц				

EWAQ-E-XS/XL/XR

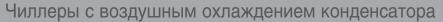
Чиллеры с воздушным охлаждением конденсатора

пульт MicroTech III

EWAQ-E-XS

- Широкий диапазон производительности от 172 до 334 кВт.
- Все модели высокоэффективного исполнения, различные варианты защиты от шума.
- Озонобезопасный хладагент R-410A.
- Надежный и эффективный спиральный компрессор с высокими показателями EER.
- Благодаря применению спиральных компрессоров большой мощности и оптимизированной форме корпуса (V-тип) снижены вес, требуемая площадь для монтажа, а также упростилась транспортировка.
- Высокое значение холодильного коэффициента при частичной загрузке (ESEER до 4.31).
- Широкий рабочий диапазон температур наружного воздуха:
 Режим охлаждения от -18 °C до 52 °C (опция)
- Опционально блок может быть укомплектован элементами гидравлического модуля.

УРОВЕНЬ ШУМА


Энергоэффективность	Стандартный	Низкий, ниже на 3-4 дБА стандартного	Бесшумный, ниже на ~8 дБА стандартного
Высокая (ЕЕЯ до 3.06)	EWAQ-E-XS	EWAQ-E-XL	EWAQ-E-XR

ТОЛЬКО ОХЛАЖДЕНИЕ

модель		EWAQ-E-XS/XL	180	200	230	260	320	340					
Холодопроизводительность		кВт	178	200	226	263	315	334					
Потребляемая мощность		кВт	58.0	65.4	73.8	86.2	103.0	110.0					
Коэффициент EER				3.06			3.05						
Уровень звукового давления		дБА	75 / 73	76 / 73	76 / 73	76 / 73	77 / 74	77 / 74					
Компрессор					Спира	альный							
Количество						1							
Минимальная холодопроизводительность		%	50	43	50	33	27	33					
Хладагент			R-410A										
Число контуров				1									
Испаритель			Пластинчатый теплообменник										
Количество						1							
Размер водяных патрубков входа/выхода		Дюйм				3							
Вес агрегата (сухой)		КГ	1722 / 1876	1807 / 1965	1871 / 2032	2173 / 2370	2304 / 2507	2492 / 2705					
Габариты	Длина	MM	4413	4413	5313	5313	6213	6213					
	Ширина	MM	1224	1224	1224	1224	1224	1224					
	Высота	MM	2271 2271 2271 2271 2271 2271										
Электропитание Ү1		В			3~, 400	В, 50 Гц							

модель		EWAQ-E-XR	170	190	220	260	300	320							
Холодопроизводительность		кВт	172	193	219	254	302	321							
Потребляемая мощность		кВт	56.5	64.4	71.8	85.4	102.0	109.0							
Коэффициент EER			3.05	3.00	3.05	2.97	2.96	2.95							
Уровень звукового давления		дБА	66	67	68	67	68	69							
Компрессор					Спира	эльный									
Количество						1									
Минимальная холодопроизводительнос	Ть	%	50	50 43 50 33 27 33											
Хладагент				R-410A											
Число контуров						1									
Испаритель			Пластинчатый теплообменник												
Количество						1									
Размер водяных патрубков входа/выход	ıa .	Дюйм				3									
Вес агрегата (сухой)		КГ	1970	2064	2134	2489	2632	2840							
Габариты	Длина	MM	4413	4413	5313	5313	6213	6213							
•	Ширина	MM	1224	1224	1224	1224	1224	1224							
	Высота	MM	2271 2271 2271 2271 2271 2271 2271												
Электропитание Ү1		В			3~, 400	В, 50 Гц									

EWAQ-F-SS/SL/SR

пульт MicroTech III

EWAQ360,410-610F-SS/SL

- Широкий диапазон производительности от 198 до 609 кВт.
- Модели со стандартной энергоэффективностью, различные варианты защиты от шума.
- Озонобезопасный хладагент R-410A.
- Надежный и эффективный спиральный компрессор с высокими показателями EER.
- 2 независимых контура хладагента.
- Благодаря применению спиральных компрессоров большой мощности и оптимизированной форме корпуса (V-тип) снижены вес, требуемая площадь для монтажа, а также упростилась транспортировка.
- Широкий рабочий диапазон температур наружного воздуха: Режим охлаждения от -18 °C до 52 °C (опция).
- Опционально блок может быть укомплектован элементами гидравлического модуля.

УРОВЕНЬ ШУМА

Энергоэффективность	Стандартный	Низкий, ниже на 3-4 дБА стандартного	Сверхнизкий, ниже на ~8 дБА стандартного
Стандартная (EER до 2.81)	EWAQ-F-SS	EWAQ-F-SL	EWAQ-F-SR

ТОЛЬКО ОХЛАЖДЕНИЕ

модель	EWA	AQ-F-SS/SL	210	230	250	280	320	350	360	400	410	480	550	610
Холодопроизводительность		кВт	206	224	247	283	313	359	359	407	407	480	551	609
Потребляемая мощность		кВт	73.3	84.9	93.6	109	122	141	141	154	154	187	207	229
Коэффициент EER			2.81	2.64	2.64	2.60	2.58	2.55	2.55	2.64	2.64	2.57	2.67	2.66
Уровень звукового давления		дБА	75 / 73	75 / 73	76 / 73	76 / 73	76 / 73	77 / 74	76 / 75	78 / 74	78 / 75	78 / 75	79 / 76	79 / 76
Компрессор								Спира	альный					
Количество									1					
Минимальная холодопроизводительность		%	25											
Хладагент							R-4	410A						
Число контуров									1					
Испаритель			Пластинчатый теплообменник											
Количество									1					
Размер водяных патрубков входа/выхода		Дюйм							3					
Вес агрегата (сухой)		КГ	2058 / 2297	2058 / 2297	2130 / 2373	2202 / 2449	2284 / 2535	2409 / 2666	2509 / 2766	2659 / 2968	2759 / 3068	2990 / 3315	3336 / 3679	3558 / 3912
Габариты	Дпина	MM	4413	4413	4413	5313	5313	6213	3210	6213	3210	4110	5010	5010
	MM	1224	1224	1224	1224	1224	1224	2258	1224	2258	2258	2258	2258	
	Высота мм					2271	2271	2271	2221	2447	2397	2221	2221	2221
Электропитание Ү1	Электропитание Y1 В							3~, 400	В, 50 Гц					

МОДЕЛЬ		EWAQ-F-SR	200	220	240	270	300	330	340	370	380	460	530	580
Холодопроизводительность		кВт	198	214	235	270	298	341	341	383	383	456	527	580
Потребляемая мощность		кВт	73.4	86.0	95.6	110	125	144	144	159	159	191	208	233
Коэффициент EER			2.70	2.49	2.46	2.45	2.38	2.37	2.37	2.41	2.41	2.39	2.53	2.49
Уровень звукового давления		дБА	66	67	68	68	68	69	70	70	71	70	71	72
Компрессор								Спира	альный					
Количество									1					
Минимальная холодопроизводительность		%	25	22	25	23	25	21	21	25	25	17	14	17
Хладагент								R-	410A					
Число контуров									1					
Испаритель			Пластинчатый теплообменник											
Количество									1					
Размер водяных патрубков входа/выхода		Дюйм							3					
Вес агрегата (сухой)		КГ	2412	2412	2491	2571	2661	2799	2899	3116	3216	3481	3863	4108
Габариты	Длина	MM	4413	4413	4413	5313	5313	6213	3210	6213	3210	4110	5010	5010
•	Ширина	MM	1224	1224	1224	1224	1224	1224	2258	1224	2258	2258	2258	2258
	Высота мм					2271	2271	2271	2221	2447	2397	2221	2221	2221
Электропитание Ү1	Электропитание Y1 В							3~, 400	В, 50 Гц					

EWAQ-F-XS/XL/XR

Чиллеры с воздушным охлаждением конденсатора

пульт MicroTech III

EWAQ320,360-680F-XS/XL

- Широкий диапазон производительности от 165 до 672 кВт.
- Все модели высокоэффективного исполнения, различные варианты защиты от шума.
- Озонобезопасный хладагент R-410A.
- Надежный и эффективный спиральный компрессор с высокими показателями EER.
- 2 независимых контура хладагента.
- Благодаря применению спиральных компрессоров большой мощности и оптимизированной форме корпуса (V-тип) снижены вес, требуемая площадь для монтажа, а также упростилась транспортировка.
- Высокое значение холодильного коэффициента при частичной загрузке (ESEER до 4.48).
- Широкий рабочий диапазон температур наружного воздуха: Режим охлаждения от -18 °C до 52 °C (опция).
- Опционально блок может быть укомплектован элементами гидравлического модуля.

УРОВЕНЬ ШУМА

Энергоэффективность	Стандартный	Низкий, ниже на 3-4 дБА стандартного	Бесшумный, ниже на ~8 дБА стандартного
Высокая (ЕЕР до 3.13)	EWAQ-F-XS	EWAQ-F-XL	EWAQ-F-XR

ТОЛЬКО ОХЛАЖДЕНИЕ

МОДЕЛЬ	EWA	AQ-F-XS/XL	170	200	220	250	310	320	350	360	400	430	450	520	610	680
Холодопроизводительность		кВт	170	194	220	244	316	316	356	356	403	428	457	528	607	672
Потребляемая мощность		кВт	54.8	62.2	70.6	78.3	102	102	115	115	130	137	146	170	198	219
Коэффициент EER			3.11	3.13	3.12	3.12	3.09	3.09	3.09	3.09	3.10	3.12	3.12	3.10	3.07	3.07
Уровень звукового давления		дБА	72 / 71	74 / 73	75 / 73	76 / 73	76 / 74	77 / 74	76 / 74	77 / 74	78 / 75	78 / 75	79 / 75	78 / 75	79 / 76	79 / 76
Компрессор									Спира	альный						
Количество										1						
Минимальная холодопроизводительность		%	25	21	25	22	23	23	25	25	21	20	25	17	14	17
Хладагент								R-	410A							
Число контуров										2						
Испаритель								П	Іластинчатый	теплообмен	ник					
Количество										1						
Размер водяных патрубков входа/выхода		Дюйм								3						
Вес агрегата (сухой)		КГ	1688 / 1909	1958 / 2193	2210 / 2457	2339 / 2592	2500 / 2761	2600 / 2861	2632 / 2900	2732 / 3000	2744 / 3017	2845 / 3124	2861 / 3141	3569 / 3923	3667 / 4026	4054 / 4434
Габариты	Длина	MM	4413	5313	5313	5313	6213	3210	6213	3210	4110	4110	4110	5010	5010	5910
	MM	1224	1224	1224	1224	1224	2258	1224	2258	2258	2258	2258	2258	2258	2258	
	Высота мм					2271	2271	2221	2271	2221	2221	2221	2221	2221	2221	2221
Электропитание Ү1	Электропитание Y1								3~, 400	В, 50 Гц						

МОДЕЛЬ		EWAQ-F-XR	170	190	210	240	300	310	330	340	390	410	430	500	580	650
Холодопроизводительность		кВт	165	188	211	236	304	304	340	340	385	407	433	502	579	645
Потребляемая мощность		кВт	53.0	61.2	68.7	77.3	101	101	117	117	128	136	146	170	200	219
Коэффициент EER			3.12	3.07	3.08	3.05	3.00	3.00	2.92	2.92	3.01	2.99	2.96	2.96	2.90	2.95
Уровень звукового давления		дБА	64	65	66	67	67	68	67	68	69	70	70	69	70	71
Компрессор									Спира	эльный						
Количество										1						
Минимальная холодопроизводительност	%	25	21	25	22	23	23	25	25	21	20	25	17	14	17	
Хладагент								R-4	110A							
Число контуров										2						
Испаритель								П	ластинчатый	теплообменн	ИК					
Количество										1						
Размер водяных патрубков входа/выхода	a .	Дюйм								3						
Вес агрегата (сухой)		КГ	2004	2303	2580	2722	2900	3000	3045	3145	3168	3280	3298	4120	4228	4655
Габариты	MM	4413	4413	5313	5313	6213	3210	6213	3210	4110	4110	4110	5010	5010	5910	
,	MM	1224	1224	1224	1224	1224	1224	2258	1224	2258	2258	2258	2258	2258	2258	
	MM	2271	2271	2271	2271	2271	2271	2221	2447	2397	2221	2221	2221	2221	2221	
Электропитание Ү1	Электропитание Y1 В 3-, 400 В, 50 Гц															

EWAD-E-SS/SL

Чиллеры с воздушным охлаждением конденсатора

пульт MicroTech III

EWAD140E-SS

- Модельный ряд, включающий модели от 97,9 до 413 кВт.
- Несколько вариантов моделей.
- Широкий рабочий диапазон температур наружного воздуха: от -18 до +48 °C (опция).
- Одноконтурные модели с одновинтовым компрессором.
- Специальное исполнение компрессора и теплообменных аппаратов для оптимизации работы на озонобезопасном хладагенте R-134a.
- Однокомпрессорные агрегаты.
- Самая маленькая занимаемая площадь поверхности в отрасли.
- Простота монтажа, пуско-наладки и удобство обслуживания.
- Доступна опция полной или частичной рекуперации теплоты.
- Для всех моделей возможна опциональная установка решёток защиты конденсатора.

УРОВЕНЬ ШУМА

Энергоэффективность	Стандартный	Низкий, ниже на 3-4 дБ(А) стандартного
Стандартная (EER до 2.95)	EWAD~E-SS	EWAD~E-SL

ТОЛЬКО ОХЛАЖДЕНИЕ

МОДЕЛЬ СО СТАНДАРТНЫМ УРС	ВНЕМ ШУМА	EWAD-E-SS	100	120	140	160	180	210	260	310	360	410		
Холодопроизводительность		кВт	101	121	138	163	183	213	255	306	359	411		
Потребляемая мощность		кВт	39.0	47.5	53.9	60.9	69.0	72.4	87.8	112.1	134.3	147.0		
Коэффициент EER			2.58	2.54	2.55	2.67	2.64	2.95	2.90	2.73	2.67	2.80		
Уровень звукового давления		дБА	74	74	74	74	74	75	75	75	75	76		
Компрессор					(дновинтовой комг	рессор с плавным	и регулированием	производительнос	сти				
Количество			1											
Минимальная холодопроизводительность		%	25											
Хладагент							R-	134a						
Число контуров			1											
Испаритель			Пластинчатый теллообменник											
Количество								1						
Размер водяных патрубков входа/выхода		Дюйм						3						
Вес агрегата (сухой)		КГ	1684	1684	1861	1861	2086	2086	2919	2919	2919	2919		
Габариты	Длина	MM	2165	2165	3065	3065	3965	3965	3070	3070	3070	3070		
	Ширина мм					1292	1292	1292	2236	2236	2236	2236		
	Высота	MM	2273	2273	2273	2273	2273	2273	2223	2223	2223	2223		
Электропитание Ү1		В					3~, 400	В, 50 Гц						

МОДЕЛЬ С НИЗКИМ УРОВНЕМ ШУМА	EWAD-E-SL	100	120	130	160	180	210	250	300	350	400		
Холодопроизводительность	кВт	98	116	134	157	177	208	248	295	344	397		
Потребляемая мощность	кВт	39.2	48.3	53.4	60.8	68.3	72.8	85.4	111.2	135	152		
Коэффициент EER		2.49	2.39	2.50	2.57	2.59	2.86	2.90	2.65	2.55	2.62		
Уровень звукового давления	дБА	71	71	71	71	71	73	73	73	73	74		
Компрессор				()дновинтовой комг	прессор с плавны	м регулированием	производительно	СТИ				
Количество							1						
Минимальная холодопроизводительность	%	25											
Хладагент		R-134a											
Число контуров			1										
Испаритель		Пластигнатый теплообменник											
Количество							1						
Размер водяных патрубков входа/выхода	Дюйм						3						
Вес агрегата (сухой)	КГ	1784	1784	1961	1961	2186	2186	3029	3029	3029	3029		
Габариты Длина	MM	2165	2165	3065	3065	3065	3965	3070	3070	3070	3070		
Ширина	MM	1292	1292	1292	1292	1292	1292	2236	2236	2236	2236		
Высота	MM	2273	2273	2273	2273	2273	2273	2223	2223	2223	2223		
Электропитание Ү1	В					3~, 400	В, 50 Гц						

EWAD-BZSS/SL/XS/XL/XR

Чиллеры с воздушным охлаждением конденсатора

пульт рСО2

- Чиллеры с инверторным приводом компрессоров.
- Оптимизирован для работы с хладагентом R-134a.
- Диапазон холодопроизводительности: 329-515 кВт.
- Холодильный коэффициент EER до 2,79.
- Электронно-расширительный клапан в стандартной комплектации.
- Однозаходный испаритель кожухотрубного типа.
- Низкий пусковой ток.
- Оптимальные значения сезонного холодильного коэффициента ESEER.
- Доступны опции частичной и полной рекуперации теплоты.
- ПИД-регулятор микропроцессора.
- Доступен в 3 вариантах уровня шума.
- Доступен в 2 вариантах энергоэффективности.

ТОЛЬКО ОХЛАЖДЕНИЕ

EWAD-BZSS/SL			330	360	400	420	460	490	520				
Холодопроизводительно	СТЬ	кВт	328	357	394	422	458	486	513				
Потребляемая мощность		кВт	121	137	148	160	169	183	195				
Коэффициент EER			2.71	2.60	2.65	2.63	2.70	2.66	2.63				
Коэффициент ESEER			4.37	4.37 4.40 4.32 4.38 4.37									
Уровень звукового давле	RNH	дБА		83 / 77 84 / 78									
Компрессор					Одновинто	вой компрессор с инверторнь	ым приводом						
Количество			2										
Минимальная производи	гельность	%				13.5							
Хладагент						R-134a							
Число контуров						2							
Испаритель					Кожухотр	убные теплообменники в общ	ем корпусе						
Размер водяных патрубк	ов входа/выхода	MM				168.3							
Вес агрегата (сухой)		КГ	4190 / 4340	4190 / 4340	4590 / 4740	4590 / 4740	4990 / 5140	4990 / 5140	4990 / 5140				
Габариты	Длина	MM	4381	4381	5281	5281	6181	6181	6181				
,	Ширина	MM	2234	2234	2234	2234	2234	2234	2234				
	Высота	MM	2355										
Электропитание Ү1		В				3~, 400 В, 50 Гц							

EWAD-BZXS/XL/X	(R		330	360	400	420	460	490	520
Холодопроизводительнос	Ть	кВт	328	357	394	422	458	486	513
Потребляемая мощность		кВт	119	136	146	158	166	180	192
Коэффициент EER			2.75	2.62	2.69	2.66	2.75	2.71	2.67
Коэффициент ESEER			4.55	4.59	4.53	4.60	4.59	4.75	4.58
Уровень звукового давле	RNH	дБА		83 / 7	77 73			84 78 74	
Компрессор					Одновинто	вой компрессор с инверторны	ым приводом		
Количество						2			
Минимальная производит	ельность	%				13.5			
Хладагент						R-134a			
Число контуров						2			
Испаритель					Кожухотр	убные теплообменники в общ	ем корпусе		
Размер водяных патрубко	ов входа/выхода	MM				168.3			
Вес агрегата (сухой)		КГ	4190 / 4340 / 4390	4190 / 4340 / 4390	4590 / 4740 / 4790	4590 / 4740 / 4790	4990 / 5140 / 5190	4990 / 5140 / 5190	4990 / 5140 / 5190
Габариты	Длина	MM	4381	4381	5281	5281	6181	6181	6181
	Ширина	MM	2234	2234	2234	2234	2234	2234	2234
	Высота	MM	2355	2355	2355	2355	2355	2355	2355
Электропитание Ү1		В				3~, 400 В, 50 Гц			

EWYD-BZSS

Чиллеры с воздушным охлаждением конденсатора

пульт рСО²

EWYD-BZSS

- Чиллеры с инверторным приводом компрессоров.
- Оптимизирован для работы с хладагентом R-134a.
- Диапазон холодопроизводительности: 254-583 кВт.
- Диапазон теплопроизводительности: 270-615 кВт.
- Холодильный коэффициент EER до 2,87.
- Электронно-расширительный клапан в стандартной комплектации.
- Однозаходный испаритель кожухотрубного типа.
- Низкий пусковой ток.
- Оптимизированный цикл оттайки.
- Оптимальные значения сезонного холодильного коэффициента ESEER.
- Доступны опции частичной и полной рекуперации теплоты.
- ПИД-регулятор микропроцессора.
- 2-3 независимых контура.

ТЕПЛОВОЙ НАСОС

МОДЕЛЬ СТАНДАРТНОГ	о исполнения		250	270	290	320	340	370	380	410	440	460	510	520	580
Холодопроизводительность		кВт	254	273	292	324	339	365	382	413	436	457	505	522	583
Теплопроизводительность		кВт	270	297	324	333	349	379	410	443	463	475	530	558	615
Потребляемая мощность (охлаждение)		кВт	90.3	100.0	109.0	116.0	124.0	134.0	142.0	152.0	163.0	161.0	178.0	186.0	215.0
Потребляемая мощность (нагрев)		кВт	90.4	99.0	107.0	117.0	124.0	132.0	141.0	155.0	165.0	164.0	176.0	184.0	205.0
Коэффициент EER			2.81	2.74	2.69	2.79	2.74	2.73	2.68	2.72	2.68	2.83	2.83	2.81	2.71
Коэффициент СОР			2.98	2.99	3.03	2.84	2.80	2.87	2.90	2.85	2.81	2.90	3.02	3.04	3.00
Уровень звукового давления (охлажден	ие)	дБА		82.1			82	2.3		82	2.5		83	3.7	
Уровень звукового давления (нагрев)		дБА	8	2.1		82	.3		82	2.5			83.7		
Компрессор							Одно	винтовой ком	прессор с инв	ерторным при	водом				
Количество							2							3	
Минимальная производительность		%					13							9	
Хладагент									R-134a						
Число контуров									2						
Испаритель								Кожухот	рубный тепло	обменник					
Размер водяных патрубков входа/выход	a	MM					139.7						21	9.1	
Вес агрегата (сухой)		КГ	3410	3455	3500	3870	3870	3940	4010	4390	4390	5015	5495	5735	5735
Габариты	Длина	MM		3547			43	81		52	81		65	i83	
	Ширина	MM		2254			22	54		22	54		22	154	
	Высота	MM		2335			23	35		23	35		23		
Электропитание Ү1		В							3~, 400 В, 50 Г	ц					

EWYD-BZSL

Чиллеры с воздушным охлаждением конденсатора

пульт рСО2

EWYD-BZSL

- Чиллеры с инверторным приводом компрессоров.
- Оптимизирован для работы с хладагентом R-134a.
- Диапазон холодопроизводительности: 248-567 кВт.
- Пониженный уровень шума при стандартной эффективности.
- Диапазон теплопроизводительности: 270-615 кВт.
- Холодильный коэффициент EER до 2,87.
- Электронно-расширительный клапан в стандартной комплектации.
- Однозаходный испаритель кожухотрубного типа.
- Низкий пусковой ток.
- Оптимизированный цикл оттайки.
- Оптимальные значения сезонного холодильного коэффициента ESEER.
- Доступны опции частичной и полной рекуперации теплоты.
- ПИД-регулятор микропроцессора.
- 2-3 независимых контура.

ТЕПЛОВОЙ НАСОС

МОДЕЛЬ НИЗКОШУМНОГО И	СПОЛНЕНИЯ		250	270	290	320	330	360	370	400	430	450	490	510	570
	OTTOTITLETINI	кВт	248	266	291	316	331	355	372	403	425	448	493	510	567
Холодопроизводительность									-						
Теплопроизводительность		кВт	270	297	324	333	349	379	410	443	463	475	530	558	615
Потребляемая мощность (охлаждение)		кВт	88.5	98.0	109.0	113.0	122.0	132.0	142.0	149.0	161.0	156.0	174.0	183.0	214.0
Потребляемая мощность (нагрев)		кВт	90.4	99.0	107.0	117.0	124.0	132.0	141.0	155.0	165.0	164.0	176.0	184.0	205.0
Коэффициент EER			2.80	2.70	2.66	2.79	2.72	2.68	2.62	2.71	2.64	2.87	2.83	2.79	2.65
Коэффициент СОР			2.98	2.99	3.03	2.84	2.80	2.87	2.90	2.85	2.81	2.90	3.02	3.04	3.00
Уровень звукового давления (охлаждение)		дБА		75.6			75	i.8		76	6.0		77	7.2	
Уровень звукового давления (нагрев)		дБА		76.5			77	.2		77	7.4		78	3.6	
Компрессор							Одно	винтовой комі	прессор с инв	ерторным при	водом				
Количество							2							3	
Минимальная производительность		%					13							9	
Хладагент									R-134a						
Число контуров									2						
Испаритель								Кожухот	рубный тепло	обменник					
Размер водяных патрубков входа/выхода		MM					139.7						21	9.1	
Вес агрегата (сухой)		КГ	3750	3795	3840	4210	4210	4280	4350	4730	4730	5525	6005	6245	6245
Габариты	Длина	MM		3547			43	81		52	281		65	i83	
	Ширина	MM		2254			22	54		22	254		22	154	
	Высота	MM		2335			23	35		23	335		23	135	
Электропитание Ү1		В							3~, 400 В, 50 Г	Ц			77.2 78.6 3 9 219.1 25 6005 6245 6683 2254 2335		

EWAD-C-SS/SL/SR

Чиллеры с воздушным охлаждением конденсатора

• Модельный ряд, включающий модели от 617 до 1917 кВт.

- Высокий коэффициент энергоэффетивности EER до 3.7, сезонный коэффициент энергоэффетивности ESEER до 4.63.
- Несколько вариантов моделей.
- Двух- и трехкомпрессорные агрегаты с независимыми холодильными контурами.
- Широкий рабочий диапазон температур наружного воздуха: от -18 до 52 °C (опция).
- Одновинтовой компрессор с плавным регулированием производительности.

- пульт MicroTech III
- Специальное исполнение компрессора и теплообменных аппаратов для оптимизации работы на озонобезопасном хладагенте R-134a.
- Электронный пульт управления с возможностью интеграции агрегата в единую систему управления зданием (BMS) по протоколам BACnet, Modbus и LonWorks.
- Самая маленькая занимаемая площадь поверхности в отрасли.
- Простота монтажа, пуско-наладки и удобство обслуживания.
- Доступна опция полной или частичной рекуперации теплоты.
- Для всех моделей возможна опциональная установка решёток защиты конденсатора.

УРОВЕНЬ ШУМА

Энергоэффективность	Стандартный	Низкий, ниже на 3-4 дБ(А) стандартного	Бесшумный, ниже на ~8 дБ(А) стандартного
Стандартная (EER до 2.95)	EWAD~C-SS	EWAD~C-SL	EWAD~C-SR
Высокая (ЕЕЯ до 3.25)	EWAD~C-XS	EWAD~C-XL	EWAD~C-XR
Премиум-класса (EER до 3.63)	EWAD~C-PS	EWAD~C-PL	EWAD~C-PR

ТОЛЬКО ОХЛАЖДЕНИЕ

модель	EWAD-C-	SS/SL	650	740	830	910	970	C11	C12	C13	H14	C15	C16	C17	C18	C19	C20
Холодопроизводительност	Ть	кВт	645	741	829	908	962	1059	1146	1315	1412	1532	1615	1706	1797	1870	1917
Потребляемая мощность		кВт	223	265	302	322	355	382	408	446	479	557	586	627	669	687	721
Коэффициент EER			2.89	2.80	2.74	2.82	2.71	2.77	2.81	2.95	2.95	2.75	2.75	2.72	2.69	2.72	2.66
Уровень звукового давлен	RNI	дБА	79 / 76	80 / 76	80 / 76	80 / 77	81 / 77	81 / 77	81 / 77	81 / 77	81 / 77	81 / 77	81 / 77	81 / 77	82 / 78	82 / 78	82 / 78
Компрессор							()дновинтовой к	омпрессор с г	лавным регули	ированием про	изводительнос	ТИ				
Количество							2								3		
Минимальная производите	ельность	%					13								7		
Хладагент										R-134a							
Число контуров							2								3		
Испаритель								Ko	кухотрубные т	еплообменник	и в общем корі	пусе					
Количество			1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Размер водяных патрубког	в входа/выхода	MM	168.3	168.3	168.3	168.3	168.3	168.3	168.3	219.1	219.1	219.1	219.1	219.1	273	273	273
Вес агрегата (сухой)		КГ	5630/5920	5740/6030	5760/6050	6280/6570	6560/6850	7010/7300	7280/7570	7900/8190	7900/8190	10320/10770	10710/11150	10770/11210	11240/11680	11600/12040	11600/12040
Габариты	Длина	MM	6185	6185	6185	6185	6185	7085	7985	8885	8885	10185	11085	11085	11085	11985	11985
	Ширина	MM	2285	2285	2285	2285	2285	2285	2285	2285	2285	2285	2285	2285	2285	2285	2285
	Высота мм		2540	2540	2540	2540	2540	2540	2540	2540	2540	2540	2540	2540	2540	2540	2540
Электропитание Ү1		В								3~, 400 В, 50 Г	Ц						

МОДЕЛЬ	EWAD-	-C-SR	620	720	790	880	920	C10	C11	C12	H14	C13	C14	C15	C16	C17	C18	C19
Холодопроизводительность		кВт	617	712	786	872	918	1016	1107	1266	1316	1363	1465	1550	1616	1710	1791	1828
Потребляемая мощность		кВт	226	276	317	334	373	398	422	461	500	522	582	609	654	706	722	762
Коэффициент EER			2.74	2.59	2.48	2.61	2.46	2.55	2.63	2.74	2.63	2.61	2.52	2.54	2.47	2.42	2.48	2.4
Уровень звукового давления		дБА	71	72	72	72	73	73	73	73	73	73	73	73	73	74	74	74
Компрессор								Одновинт	овой компрес	сор с плавным	и регулирован	ием производ	ительности					
Количество							2								3			
Минимальная производительн	ОСТЬ	%					13								7			
Хладагент										R-	134a							
Число контуров							2								3			
Испаритель									Кожухотру	бные теплооб	менники в обц	цем корпусе						
Количество			1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Размер водяных патрубков вхо	ода/выхода	MM	168.3	168.3	168.3	168.3	168.3	168.3	168.3	219.1	219.1	219.1	219.1	219.1	219.1	273	273	273
Вес агрегата (сухой)		ΚΓ	5920	6030	6050	6570	6850	7300	7570	8190	8190	10750	10770	11150	11210	11680	12040	1204
Габариты Дл	пина	MM	6185	6185	6185	6185	6185	7085	7985	8885	8885	10185	10185	11085	11085	11085	11985	1198
. Ш	Іирина	MM	2285	2285	2285	2285	2285	2285	2285	2285	2285	2285	2285	2285	2285	2285	2285	2285
Bi	ысота	MM	2540	2540	2540	2540	2540	2540	2540	2540	2540	2540	2540	2540	2540	2540	2540	2540
Электропитание Ү1		В								3~, 400	В, 50 Гц							

EWAD-C-XS/XL/XR

Чиллеры с воздушным охлаждением конденсатора

• Модельный ряд, включающий модели от 732 до 2002 кВт.

- Высокий коэффициент энергоэффетивности EER до 3.7, сезонный коэффициент энергоэффетивности ESEER до 4.63.
- Несколько вариантов моделей.
- Двух- и трехкомпрессорные агрегаты с независимыми холодильными контурами.
- Широкий рабочий диапазон температур наружного воздуха: от -18 до 52 °C (опция).
- Одновинтовой компрессор с плавным регулированием производительности.

- пульт MicroTech III
- Специальное исполнение компрессора и теплообменных аппаратов для оптимизации работы на озонобезопасном хладагенте R-134a.
- Электронный пульт управления с возможностью интеграции агрегата в единую систему управления зданием (BMS) по протоколам BACnet, Modbus и LonWorks.
- Самая маленькая занимаемая площадь поверхности в отрасли.
- Простота монтажа, пуско-наладки и удобство обслуживания.
- Доступна опция полной или частичной рекуперации теплоты.
- Для всех моделей возможна опциональная установка решёток защиты конденсатора.

УРОВЕНЬ ШУМА

Энергоэффективность	Стандартный	Низкий, ниже на 3-4 дБ(А) стандартного	Бесшумный, ниже на ~8 дБ(А) стандартного
Стандартная (EER до 2.95)	EWAD~C-SS	EWAD~C-SL	EWAD~C-SR
Высокая (ЕЕР до 3.25)	EWAD~C-XS	EWAD~C-XL	EWAD~C-XR
Премиум-класса (EER до 3.63)	EWAD~C-PS	EWAD~C-PL	EWAD~C-PR

ТОЛЬКО ОХЛАЖДЕНИЕ

МОДЕЛЬ	EWAD-C-	VC/VI	760	830	890	990	C10	C11	C12	C13	H14	H15	C16	C17	C18	C19	C20	C21	C22
МОДЕЛЬ	EWAD-C-											-		-					-
Холодопроизводительность		кВт	752	827	885	997	1069	1192	1276	1343	1408	1517	1590	1678	1760	1849	1896	1948	2002
Потребляемая мощность		кВт	237	256	282	311	343	367	404	416	451	483	510	541	569	598	620	648	677
Коэффициент EER			3.17	3.22	3.14	3.20	3.12	3.25	3.15	3.23	3.13	3.14	3.12	3.10	3.09	3.09	3.06	3.01	2.96
Уровень звукового давлени	Я	дБА	80 /76.3	80 /76.5	80 /76.5	80 /76.9	81 /77.1	80 /76.7	80 /76.8	80 /76.8	80 /76.8	80 /76.8	81 /77.3	81 /77.4	81 /77.5	81 /77.5	81 /77.5	81 /77.5	81 /77.5
Компрессор								Одно	винтовой ком	прессор с пл	авным регул	ированием п	роизводитель	ности					
Количество								2								3			
Минимальная производител	1ЬНОСТЬ	%						13						2.3 81 /77.4 81 /77.5 81 /77.5 81 /77.5 81 /77.5 91 /77.5					
Хладагент											R-134a			3.10 3.09 3.09 3.06 3.01 81/77.5 81/77					
Число контуров								2								3			
Испаритель									Кожу	котрубные те	плообменник	ки в общем ко	рпусе						
Количество											1								
Размер водяных патрубков	входа/выхода	MM	168.3	168.3	168.3	219.1	219.1	219.1	219.1	273	273	273	273	273	273	273	273	273	273
Вес агрегата (сухой)		КГ	5990/6280	6340/6630	6360/6650	7190/7480	7470/7760	8220/8510	8240/8530	8900/9190	8900/9190	8900/9190	11570/12010	11900/12350	12260/12700	12600/13040	12600/13040	12600/13040	12600/13040
Габариты	Длина	MM	6185	7085	7085	7985	7985	9785	9785	9785	9785	9785	11985	12885	13785	14685	14685	14685	14685
·····r	Ширина	MM	2285	2285	2285	2285	2285	2285	2285	2285	2285	2285	2285	2285	2285	2285	2285	2285	2285
	Высота	MM	2540	2540	2540	2540	2540	2540	2540	2540	2540	2540	2540	2540	2540	2540	2540	2540	2540
Электропитание Ү1		В								3~, 400	В, 50 Гц								

модель	EWAD	-C-XR	740	810	870	970	C10	C11	C12	C13	H14	H15	C16	C17	C18	C19	C20	C21	C22
Холодопроизводительност	Ь	кВт	732	808	862	970	1036	1164	1243	1397	1361	1461	1544	1632	1715	1805	1849	1897	1947
Потребляемая мощность		кВт	238	257	285	313	348	369	409	420	461	498	518	548	574	604	629	663	695
Коэффициент EER			3.07	3.15	3.03	3.10	2.98	3.16	3.04	3.09	2.95	2.93	2.98	2.98	2.99	2.99	2.94	2.86	2.80
Уровень звукового давлени	RN	дБА	72	72	72	72	73	72	72	72	73	73	73	73	73	73	73	74	74
Компрессор								Одно	винтовой кол	прессор с пл	павным регул	ированием п	роизводител	ьности					
Количество								2						3 7					
Минимальная производите	льность	%						13								7			
Хладагент											R-134a								
Число контуров								2								3			
Испаритель									Кожу	хотрубные те	плообменник	и в общем к	рпусе						
Количество											1								
Размер водяных патрубков	в входа/выхода	MM	168.3	168.3	168.3	219.1	219.1	219.1	219.1	273	273	273	273	273	273	273	273	273	273
Вес агрегата (сухой)		КГ	6280	6630	6650	7480	7760	8510	8530	9190	9190	9190	12010	12350	12700	13040	13040	13040	13040
Габариты	Длина	MM	6185	7085	7085	7985	7985	9785	9785	9785	9785	9785	11985	12885	13785	14685	14685	14685	14685
	Ширина	MM	2285	2285	2285	2285	2285	2285	2285	2285	2285	2285	2285	2285	2285	2285	2285	2285	2285
	Высота	MM	2540	2540	2540	2540	2540	2540	2540	2540	2540	2540	2540	2540	2540	2540	2540	2540	2540
Электропитание Ү1		В								3~, 400	В, 50 Гц								

EWAD-C-PS/PL/PR

Чиллеры с воздушным охлаждением конденсатора

- Модельный ряд, включающий модели от 806 до 1553 кВт.
- Высокий коэффициент энергоэффетивности EER до 3.7, сезонный коэффициент энергоэффетивности ESEER до 4.63.
- Несколько вариантов моделей.
- Двухкомпрессорные агрегаты с независимыми холодильными контурами.
- Широкий рабочий диапазон температур наружного воздуха: от -18 до 52 °C (опция).
- Электронный пульт управления с возможностью интеграции агрегата в единую систему управления зданием (BMS) по протоколам BACnet, Modbus и LonWorks.

- пульт MicroTech III
- Одновинтовой компрессор с плавным регулированием производительности.
- Специальное исполнение компрессора и теплообменных аппаратов для оптимизации работы на озонобезопасном хладагенте R-134a.
- Самая маленькая занимаемая площадь поверхности в отрасли.
- Простота монтажа, пуско-наладки и удобство обслуживания.
- Доступна опция полной или частичной рекуперации теплоты.
- Для всех моделей возможна опциональная установка решёток защиты конденсатора.
- Широкий выбор опций и аксессуаров.

УРОВЕНЬ ШУМА

Энергоэффективность	Стандартный	Низкий, ниже на 3-4 дБ(А) стандартного	Бесшумный, ниже на ~8 дБ(А) стандартного
Стандартная (EER до 2.95)	EWAD~C-SS	EWAD~C-SL	EWAD~C-SR
Высокая (EER до 3.25)	EWAD~C-XS	EWAD~C-XL	EWAD~C-XR
Премиум-класса (EER до 3.63)	EWAD~C-PS	EWAD~C-PL	EWAD~C-PR

ТОЛЬКО ОХЛАЖДЕНИЕ

модель	EWA	D-C-PS/PL	820	890	980	C11	C12	C13	C14	C15	C16
Холодопроизводительность		кВт	818	886	973	1070	1153	1274	1384	1467	1553
Потребляемая мощность		кВт	229	253	276	306	335	368	402	431	461
Коэффициент EER			3.57	3.51	3.52	3.49	3.44	3.46	3.44	3.40	3.37
Уровень звукового давления		дБА	80 / 77	80 / 77	80 / 77	80 / 77	81 / 77	80 / 77	81 / 77	81 / 78	81 / 78
Компрессор					Однови	нтовой компрессор	с плавным регулиро	ванием производите	ельности		
Количество							2				
Минимальная производительность		%					13				
Хладагент							R-134a				
Число контуров							2				
Испаритель						Кожухотрубны	е теплообменники в	общем корпусе			
Количество							1				
Размер водяных патрубков входа/выхода		MM	219.1	219.1	273	273	273	273	273	273	273
Вес агрегата (сухой)		КГ	7530 / 7820	7530 / 7820	7660 / 7950	8290 / 8580	8550 / 8840	9390 / 10380	9730 / 10720	9730 / 10720	9730 / 10720
Габариты	Длина	MM	8885	8885	8885	9785	9785	11085	11985	11985	11985
•	Ширина	MM	2285	2285	2285	2285	2285	2285	2285	2285	2285
Bucota MM 2540 2540 2540 2540 2540 2540 2540 2540							2540	2540	2540		
Электропитание Ү1		В					3~, 400 В, 50 Гц				

модель		EWAD-C-PR	810	880	960	C10	C11	C13	C14	C15	C16
Холодопроизводительность		кВт	806	871	954	1049	1127	1246	1353	1432	1513
Потребляемая мощность		кВт	222	248	275	303	335	369	402	432	465
Коэффициент EER			3.63	3.51	3.47	3.46	3.36	3.38	3.36	3.32	3.26
Уровень звукового давления		дБА	71	71	71	72	72	72	72	72	73
Компрессор					Однови	нтовой компрессор	с плавным регулиро	ванием производите	ЭЛЬНОСТИ		
Количество							2				
Минимальная производительность		%					13				
Хладагент							R-134a				
Число контуров							2				
Испаритель						Кожухотрубны	е теплообменники в	общем корпусе			
Количество							1				
Размер водяных патрубков входа/выхода		MM	219.1	219.1	273	273	273	273	273	273	273
Вес агрегата (сухой)		КГ	7820	7820	7950	8580	8840	10380	10720	10720	10720
Габариты	Длина	MM	8885	8885	8885	9785	9785	11085	11985	11985	11985
•	Ширина	MM	2285	2285	2285	2285	2285	2285	2285	2285	2285
	Высота	MM	2540	2540	2540	2540	2540	2540	2540	2540	2540
Электропитание Ү1		В					3~, 400 В, 50 Гц				

EWAD-CFXS/XL/XR

Чиллеры с воздушным охлаждением конденсатора

EWAD-C

• Свободное охлаждение (free cooling).

- Высокий коэффициент энергоэффетивности EER до 3.19, сезонный коэффициент энергоэффетивности ESEER до 4.13.
- Несколько вариантов моделей.
- Широкий диапазон мощностей: 11 типоразмеров от 602 и 1476 кВт (XR), 640 и 1555 кВт (XS / XL).
- Большая экономия энергии и снижение выбросов ${\rm CO_2}$ в холодное время года.
- Широкий рабочий диапазон температур наружного воздуха: от -18 до 50 $^{\circ}$ C (опция).

- пульт MicroTech III
- Специальное исполнение компрессора и теплообменных аппаратов для оптимизации работы на озонобезопасном хладагенте R134a.
- Двухкомпрессорные агрегаты с независимыми холодильными контурами
- Простота монтажа, пуско-наладки и удобство обслуживания.
- Для всех моделей возможна опциональная установка решёток защиты конденсатора.
- Широкий выбор опций и аксессуаров

УРОВЕНЬ ШУМА

Энергоэффективность	Стандартный	Низкий, ниже на 3-4 дБ(А) стандартного	Бесшумный, ниже на ~8 дБ(А) стандартного
Высокая (ЕЕР до 3.19)	EWAD~CFXS	EWAD~CFXL	EWAD~CFXR

ТОЛЬКО ОХЛАЖДЕНИЕ

модель	Ε\	WAD-CFXS/XL	640	770	850	900	C10	C11	C12	C13	C14	C15	C16		
Холодопроизводительность		кВт	640* / 295**	772* / 365**	852* / 413**	902* / 434**	1027* / 502**	1089* / 524**	1269* / 594**	1349* / 652**	1435* / 663**	1493* / 659**	1555* / 722**		
Потребляемая мощность		кВт	257* / 74.3**	272* / 87.9**	293* / 90.7**	324* / 99.8**	360* / 109**	399* / 118**	397* / 131**	439* / 143**	454* / 152**	492* / 160**	530* / 170**		
Коэффициент EER			2.49* / 8.62**	2.84* / 8.78**	2.90* / 9.4**	2.78* / 9.04**	2.85* / 9.43**	2.73* / 9.19**	3.19* / 9.67**	3.08* / 9.45**	3.16* / 9.42**	3.04* / 9.33**	2.93* / 9.16**		
Уровень звукового давления*		дБА	79 / 76	80 / 76	80 / 77	80 / 77	80 / 77	80 / 77	80 / 77	80 / 77	80 / 77	80 / 77	80 / 77		
Компрессор						Одновинтово	й компрессор с	плавным регулир	ованием произв	водительности					
Количество								2							
Минимальная производительность		%						12.5							
Хладагент		R-134a													
Число контуров						2									
Испаритель			Кожухотрубный теплообменник												
Количество								2							
Размер водяных патрубков входа/выхода		MM		16	8.3			21	9.1			273			
Вес агрегата (сухой)		КГ	7760	8340	8900	8900	10160	10420	11900	11900	12540	12620	12670		
Габариты	MM	2565	2565	2565	2565	2565	2565	2565	2565	2565	2565	2565			
•	MM	2480	2480	2480	2480	2480	2480	2480	2480	2480	2480	2480			
	MM	6185	7085	7985	7985	8885	8885	10685	10685	10685	10685	10685			
Электропитание Y1								3~, 400 В, 50 Гц							

модель		EWAD-CFXR	600	740	820	870	980	C10	C11	C12	C13	C14	C15		
Холодопроизводительность		кВт	602* / 270**	739* / 334**	821* / 379**	866* / 409**	981* / 459**	1034* / 492**	1229* / 562**	1302* / 598**	1374* / 619**	1424* / 640**	1476* / 668**		
Потребляемая мощность		кВт	263* / 70.3**	278* / 84.3**	299* / 88.4**	334* / 95.9**	368* / 106**	412* / 112**	403* / 127**	450* / 141**	466* / 146**	511* / 154**	556* / 161**		
Коэффициент EER			2.29* / 8.56**	2.66* / 8.77**	2.75* / 9.29**	2.59* / 9.03**	2.67* / 9.27**	2.51* / 9.21**	3.05* / 9.67**	2.90* / 9.22**	2.95* / 9.40**	2.79* / 9.26**	2.66* / 9.15**		
Уровень звукового давления**		дБА	71	72	72	72	72	73	72	72	72	73	73		
Компрессор						Одновинтово	ой компрессор с	плавным регули	ованием произв	водительности					
Количество								2							
Минимальная производительность		%						12.5							
Хладагент		R-134a													
Число контуров						2									
Испаритель			Кожухотрубный теплообменник												
Количество								2							
Размер водяных патрубков входа/выхода		MM		16	68.3			21	9.1			273			
Вес агрегата (сухой)	КГ	8050	8620	9190	9190	10450	10710	12190	12190	12830	12910	12960			
Габариты	MM	2565	2565	2565	2565	2565	2565	2565	2565	2565	2565	2565			
·	MM	2480	2480	2480	2480	2480	2480	2480	2480	2480	2480	2480			
	MM	6185 7085 7985 7985 8885 8885 10685 10685 10685 10685 10685													
Электропитание Y1 В 3~, 400 В, 50 Гц															

 $^{^*}$ Охлаждение: температура испарителя 16/10 $^\circ$ С, окружающего воздуха 35 $^\circ$ С; блок при полной нагрузке; стандарт: ISO 3744

^{**} Данные рассчитаны при температуре окружающего воздуха 5 ° C, температура воды на входе 16 ° C.

EWAD-CZXS/XL/XR

Чиллеры с воздушным охлаждением конденсатора

EWAD-CZ

- Чиллеры с инверторным приводом компрессоров.
- Высокий коэффициент энергоэффективности EER до 3.07, сезонный коэффициент энергоэффективности ESEER до 5.27.
- Широкий рабочий диапазон температур наружного воздуха: от -18 до 50 °C (опция).
- Специальное исполнение компрессора и теплообменных аппаратов для оптимизации работы на озонобезопасном хладагенте R134a.
- Электронный пульт управления с возможностью интеграции агрегата в единую систему управления зданием (BMS) по протоколам BACnet, Modbus и LonWorks.
- Двух- и трёхкомпрессорные агрегаты с независимыми холодильными контурами.
- Самая маленькая занимаемая площадь поверхности в отрасли.
- Простота монтажа, пуско-наладки и удобство обслуживания.
- Доступна опция полной или частичной рекуперации теплоты.
- Для всех моделей возможна опциональная установка решёток защиты конденсатора.
- Широкий выбор опций и аксессуаров.

УРОВЕНЬ ШУМА

Энергоэффективность	Стандартный	Низкий, ниже на 3-4 дБ(А) стандартного	Бесшумный, ниже на ~8 дБ(А) стандартного
Высокая (ЕЕР до 3.07)	EWAD~CZXS	EWAD~CZXL	EWAD~CZXR

ТОЛЬКО ОХЛАЖДЕНИЕ

модель	EWAD	D-CZXS/XL	670	740	830	900	C10	C11	C12	C13	C14	C15	C16	C17	C18
Холодопроизводительность		кВт	668	734	828	898	1033	1090	1232	1303	1444	1538	1616	1701	1795
Потребляемая мощность		кВт	249	239	296	309	343	380	404	447	494	538	564	596	619
Коэффициент EER			2.68	3.07	3.07	2.90	3.01	2.87	3.05	2.92	2.93	2.86	2.86	2.85	2.90
Уровень звукового давления		дБА	81 / 78	81 / 78	81 / 78	81 / 78	81 / 78	81 / 78	81 / 78	81 / 78	81 / 78	81 / 78	83 / 80	83 / 80	83 / 80
Компрессор							Одно	винтовой ком	прессор с инв	ерторным при	водом				
Количество								2						3	
Минимальная производительность		%					2	0						13	
Хладагент			R-134a												
Число контуров			2 3												
Испаритель							Кож	ухотрубные т	еплообменник	и в общем кор	пусе				
Количество									1						
Размер водяных патрубков входа/выхода		MM		16	8.3				21	9.1				273	
Вес агрегата (сухой)	КГ	5880 / 6170	6000 / 6280	6620 / 6900	6870 / 7150	7440 / 7720	7440 / 7720	8570 / 8850	8970 / 9250	9600 / 9880	9940 / 10220	11370 / 11790	12190 / 12610	12920 / 13340	
Габариты	MM	6725	6725	7625	7625	8525	8525	10325	10325	11625	12525	12525	13425	14325	
Ширина мм			2285	2285	2285	2285	2285	2285	2285	2285	2285	2285	2285	2285	2285
	MM	2540 2540 2540 2540 2540 2540 2540 2540							2540						
Электропитание Ү1	В							3~, 400 B, 50 ſ	Ц						

модель		EWAD-CZXR	640	700	790	850	980	C10	C11	C12	C13	C14	C15	C16	C17
Холодопроизводительность		кВт	631	696	786	849	972	1027	1166	1231	1327	1437	1539	1624	1706
Потребляемая мощность		кВт	264	246	274	318	351	393	412	459	493	523	585	617	638
Коэффициент EER			2.40	2.83	2.86	2.67	2.77	2.61	2.83	2.68	2.69	2.75	2.63	2.63	2.67
Уровень звукового давления		дБА	74	74	74	74	74	74	74	74	74	74	76	76	76
Компрессор							Одно	винтовой комі	прессор с инв	ерторным при	1ВОДОМ				
Количество								2						3	
Минимальная производительность		%					2	.0						13	
Хладагент								R-134a							
Число контуров						2 3									
Испаритель							Кож	ухотрубные те	еплообменник	и в общем кор	опусе				
Количество									1						
Размер водяных патрубков входа/выхода		MM		16	8.3				21	9.1				273	
Вес агрегата (сухой)						7360	7950	7950	9120	9530	10180	10530	12150	12990	13740
Габариты	MM	6725	6725	7625	7625	8525	8525	10325	10325	11625	12525	12525	13425	14325	
•	Ширина мм					2285	2285	2285	2285	2285	2285	2285	2285	2285	2285
	MM	2540 2540 2540 2540 2540 2540 2540 2540							2540						
Электропитание Ү1							3~, 400 B, 50 f	· 4							

^{*} Информация на момент публикации отсутствует

EWAD-D-SS/SL/SR/SX

Чиллеры с воздушным охлаждением конденсатора

- Широкий диапазон производительности (177 кВт 575 кВт).
- Одновинтовой компрессор с плавным регулированием производительности
- Специальное исполнение компрессора и теплообменных аппаратов для оптимизации работы на озонобезопасном хладагенте R-134a.
- Электронный пульт управления с возможностью интеграции агрегата в единую систему управления зданием (BMS) по протоколам BACnet, Modbus TCP/IP и LonWorks.
- пульт MicroTech III
- Двухкомпрессорные агрегаты с независимыми холодильными контурами.
- Небольшая занимаемая площадь.
- Простота монтажа, пуско-наладки и удобство обслуживания.
- Большая номенклатура опций и аксессуаров.
- Широкий рабочий диапазон температур наружного воздуха: от -18 °C до +48 °C (опция).

УРОВЕНЬ ШУМА

Энергоэффективность	Стандартный	Низкий, ниже на 3-4 дБ(А) стандартного	Бесшумный, ниже на ~8 дБ(А) стандартного	Стандартный шум
Стандартная (EER до 2.72)	EWAD~D-SS	EWAD~D-SL	EWAD~D-SR	EWAD~D-SX
Высокая (ЕЕР до 3.16)	EWAD~D-XS		EWAD~D-XR	
Повышенный EER	EWAD~D-HS	-		-

ТОЛЬКО ОХЛАЖДЕНИЕ

модель	Е	WAD-D-SS	390	440	470	510	530	560	580					
Холодопроизводительность		кВт	388	435	463	500	529	553	575					
Потребляемая мощность		кВт	154	165	169	186	196	207	199					
Коэффициент EER			2.52	2.63	2.74	2.70	2.70	2.67	2.89					
Уровень звукового давления		дБА	77	77	77	77	79	79	79					
Компрессор					Одновинтовой компре	ссор с плавным регулировани	ем производительности							
Количество						2								
Минимальная производитель	ность	%				12.5								
Хладагент														
Число контуров				2										
Испаритель			Кожулотрубные теплообменники в общем корпусе											
Количество						1								
Размер водяных патрубков в	хода/выхода	MM	139.7	139.7	139.7	139.7	139.7	139.7	139.7					
Вес агрегата (сухой)		КГ	2960	4030	4220	4230	4230	4230	4235					
Габариты	Длина	MM	3139	4040	4040	4040	4040	4040	4040					
	Ширина	MM	2234	2234	2234	2234	2234	2234	2234					
	Высота	MM	2223	2223	2223	2223	2223	2223	2223					
Электропитание Ү1		В				3~, 400 В, 50 Гц								

МОДЕЛЬ	E	EWAD-D-SL	180	200	230	250	260	280	300	320	370	400	440	480	510	530
Холодопроизводительно	СТЬ	кВт	183	197	224	244	260	274	297	320	368	402	438	475	503	531
Потребляемая мощность)	кВт	82.0	80.2	85.6	94.4	102	109	121	125	135	171	172	188	205	197
Коэффициент EER			2.24	2.46	2.62	2.58	2.54	2.50	2.46	2.56	2.72	2.36	2.55	2.53	2.46	2.70
Уровень звукового давл	RNHS	дБА	75	75	75	75	75	75	75	75	78	75	75	75	76	77
Компрессор							Однови	интовой компре	ссор с плавным	и регулировани	ем производите	ельности				
Количество										2						
Минимальная производи	тельность	%							1	2.5						
Хладагент									R-	134a						
Число контуров										2						
Испаритель								Кожухотр	убные теплооб	менники в общ	ем корпусе					
Количество										1						
Размер водяных патрубн	ов входа/выхода	MM	88.9	88.9	114.3	114.3	114.3	114.3	114.3	139.7	139.7	139.7	139.7	139.7	139.7	139.
Вес агрегата (сухой)		КГ	2475	2470	2860	2860	2860	2860	2860	3187	3187	4030	4220	4230	4230	4235
Габариты	Длина	MM	2239	2239	3139	3139	3139	3139	3139	4040	4040	4040	4040	4040	4040	404
	Ширина	MM	2234	2234	2234	2234	2234	2234	2234	2234	2234	2234	2234	2234	2234	223
	Высота	MM	2355	2355	2355	2355	2355	2355	2355	2355	2355	2223	2223	2223	2223	222
Электропитание Y1 В 3, 400 В, 50 Гц																

EWAD-D-SS/SL/SR/SX Чиллеры с воздушным охлаждением конденсатора

ТОЛЬКО ОХЛАЖДЕНИЕ

МОДЕЛЬ	E	WAD-D-SR	180	190	220	240	250	270	280	310	370	400	440	480	510	530
Холодопроизводительность		кВт	177	190	218	237	251	263	277	310	364	402	438	475	503	531
Потребляемая мощность		кВт	84.5	83.1	86.2	95.6	104	112	123	127	140	171	172	188	205	197
Коэффициент EER			2.09	2.28	2.30	2.48	2.41	2.34	2.25	2.45	2.60	2.36	2.55	2.53	2.46	2.70
Уровень звукового давления	4	дБА	70	70	70	70	70	70	70	70	73	71	71	71	73	73
Компрессор							Однови	итовой компре	ссор с плавны	и регулировани	ем производит	ельности				
Количество										2						
Минимальная производител	ьность	%							1	2.5						
Хладагент		R-134a														
Число контуров										2						
Испаритель									Кожухотрубны	й теплообменни	1K					
Количество										1						
Размер водяных патрубков в	входа/выхода	MM	88.9	88.9	114.3	114.3	114.3	114.3	114.3	139.7	139.7	139.7	139.7	139.7	139.7	139.7
Вес агрегата (сухой)		КГ	2620 2620 2890 2890 2890 2890 2890 2890 3335 3335 4040 4240 4240 4240 4240 4240								4240					
Габариты	Длина	MM	2239	2239	3139	3139	3139	3139	3139	4040	4040	4040	4040	4040	4040	4040
	Ширина	MM	2234	2234	2234	2234	2234	2234	2234	2234	2234	2234	2234	2234	2234	2234
	Высота	MM	2355	2355	2355	2355	2355	2355	2355	2355	2355	2223	2223	2223	2223	2223
Электропитание Y1	Электоолитание Y1 B 3~ 400 B. 50 Ги															

модель	EV	VAD-D-SX	210	230	250	270	290	300	310	370	410	450	490
Холодопроизводительность		кВт	202	230	252	270	285	298	308	369	412	449	490
Потребляемая мощность		кВт	80.8	86.0	94.4	105	115	127	137	150	171	175	189
Коэффициент EER			2.50	2.68	2.67	2.56	2.47	2.35	2.25	2.46	2.41	2.56	2.60
Уровень звукового давления		дБА	65	65	65	65	65	65	65	65	65	66	66
Компрессор						Одновин	товой компрессор	с плавным регулир	ванием производи	тельности			
Количество								2					
Минимальная производительно	СТЬ	%						12.5					
Хладагент	R-134a												
Число контуров								2					
Испаритель							Кожу	хотрубный теплооб	иенник				
Количество								1					
Размер водяных патрубков вход	а/выхода	MM	114.3	114.3	114.3	114.3	114.3	114.3	114.3	139.7	139.7	139.7	139.7
Вес агрегата (сухой)		КГ	3110 3475 3475 3425 3430 3430 3430 3560 4302 4506 458									4581	
Габариты Дл	ина	MM	3139	4040	4040	4040	4040	4040	4040	4040	4040	4940	4940
	ирина	MM	2234	2234	2234	2234	2234	2234	2234	2234	2234	2234	2234
Вь	ісота	MM	2420	2420	2420	2420	2420	2420	2420	2420	2420	2420	2420
Электропитание Y1 В 3~ 400 В, 50 Гц													

EWAD-D-XS/XR

Чиллеры с воздушным охлаждением конденсатора

EWAD-D-*

- Двухкомпрессорные агрегаты с независимыми холодильными конту-
- Небольшая занимаемая площадь.
- Простота монтажа, пуско-наладки и удобство обслуживания.
- Большая номенклатура опций и аксессуаров.
- Широкий рабочий диапазон температур наружного воздуха: от -18 °C до +48 °C (опция).
- Широкий диапазон производительности (242 кВт 620 кВт).
- Одновинтовой компрессор с плавным регулированием производи-
- Специальное исполнение компрессора и теплообменных аппаратов для оптимизации работы на озонобезопасном хладагенте R-134a.
- Электронный пульт управления с возможностью интеграции агрегата в единую систему управления зданием (BMS) по протоколам BACnet, Modbus, TCP/IP и LonWorks.

УРОВЕНЬ ШУМА

Энергоэффективность	Стандартный	Низкий, ниже на 3-4 дБ(А) стандартного	Бесшумный, ниже на ~8 дБ(А) стандартного	Стандартный шум
Стандартная (EER до 2.72)	EWAD~D-SS	EWAD~D-SL	EWAD~D-SR	EWAD~D-SX
Высокая (ЕЕР до 3.16)	EWAD~D-XS		EWAD~D-XR	
Повышенный EER	EWAD~D-HS			-

ТОЛЬКО ОХЛАЖДЕНИЕ

МОДЕЛЬ	Е	WAD-D-XS	250	280	300	330	350	380	400	470	520	580	620
Холодопроизводительность	Ь	кВт	246	274	300	326	350	374	399	467	522	573	620
Потребляемая мощность		кВт	80.1	88.2	95.4	105	114	121	189	152	169	183	196
Коэффициент EER			3.07	3.11	3.15	3.10	3.06	3.08	3.10	3.07	3.09	3.12	3.16
Уровень звукового давлени	/IS	дБА	78	78	78	78	78	79	79	79	79	79	79
Компрессор				Одновинтовой компрессор с плавным регулированием производительности									
Количество				2									
Минимальная производител	ЛЬНОСТЬ	%		12.5									
Хладагент								R-134a					
Число контуров								2					
Испаритель							Кожу.	котрубный теплооб	менник				
Количество								1					
Размер водяных патрубков	в входа/выхода	MM	114.3	114.3	114.3	114.3	114.3	114.3	114.3	168.3	168.3	168.3	168.3
Вес агрегата (сухой)		КГ	2905	3285	3285	3235	3240	3240	3240	3510	4670	4685	4685
Габариты	Длина	MM	3138	4040	4040	4040	4040	4040	4040	4040	4940	4940	4940
	Ширина	MM	2234	2234	2234	2234	2234	2234	2234	2234	2234	2234	2234
	Высота	MM	2355	2355	2355	2355	2355	2355	2355	2223	2223	2223	2223
Электропитание Ү1		В	3~, 400 В, 50 Гц										

МОДЕЛЬ	EWAD-D-XR	240	270	300	320	350	370	390	460	510	560	600
Холодопроизводительность	кВт	242	271	294	321	343	369	393	453	510	559	598
Потребляемая мощность	кВт	81.6	88.0	96.3	107	117	121	129	154	169	185	200
Коэффициент EER		2.96	3.07	3.06	3.00	2.94	3.06	3.05	2.95	3.01	3.12	2.99
Уровень звукового давления	дБА	73										
Компрессор			Одновинтовой компрессор с плавным регулированием производительности									
Количество			2									
Минимальная производительность	%		12.5									
Хладагент							R-134a					
Число контуров							2					
Испаритель						Кожу	котрубный теплооб	иенник				
Количество							1					
Размер водяных патрубков входа/в	ыхода мм	114.3	114.3	114.3	114.3	114.3	114.3	114.3	168.3	168.3	168.3	168.3
Вес агрегата (сухой)	КГ	3005	3385	3385	3335	3340	3340	3340	3610	4770	4785	4785
Габариты Длина	MM	3138	4040	4040	4040	4040	4040	4040	4040	4940	4940	4940
Шири		2234	2234	2234	2234	2234	2234	2234	2234	2234	2234	2234
Высо	га мм	2355 2355 2355 2355 2355 2355 2355 2355										
Электропитание Ү1	В		3∼. 400 В. 50 Г⊔									

EWAD-D-HS

Чиллеры с воздушным охлаждением конденсатора

EWAD-D-*

• Широкий диапазон производительности (194 кВт – 585 кВт).

- Одновинтовой компрессор с плавным регулированием производительности
- Специальное исполнение компрессора и теплообменных аппаратов для оптимизации работы на озонобезопасном хладагенте R-134a.
- Электронный пульт управления с возможностью интеграции агрегата в единую систему управления зданием (BMS) по протоколам BACnet, Modbus, TCP/IP и LonWorks.

пульт MicroTech III

- Двухкомпрессорные агрегаты с независимыми холодильными контурами.
- Небольшая занимаемая площадь.
- Простота монтажа, пуско-наладки и удобство обслуживания.
- Большая номенклатура опций и аксессуаров.
- Широкий рабочий диапазон температур наружного воздуха: от -18 °C до +48 °C (опция).

УРОВЕНЬ ШУМА

Энергоэффективность	Стандартный	Низкий, ниже на 3-4 дБ(А) стандартного	Бесшумный, ниже на ~8 дБ(А) стандартного	Стандартный шум
Стандартная (EER до 2.72)	EWAD~D-SS	EWAD~D-SL	EWAD~D-SR	EWAD~D-SX
Высокая (ЕЕР до 3.16)	EWAD~D-XS		EWAD~D-XR	
Повышенный EER	EWAD~D-HS	-		-

ТОЛЬКО ОХЛАЖДЕНИЕ

МОДЕЛЬ	EV	VAD-D-HS	200	210	230	260	270	290	310						
Холодопроизводительность		кВт	194	208	233	255	272	288	305						
Потребляемая мощность		кВт	77.9	76.0	83.9	92.1	98.9	105	114						
Коэффициент EER			2.49	2.73	2.77	2.77	2.75	2.73	2.68						
Уровень звукового давления		дБА	77	77	77	77	77	77	77						
Компрессор					Одновинтовой компре	ссор с плавным регулировани	ем производительности								
Количество	2														
Минимальная производительно	СТЬ	%		13											
Хладагент				R-134a											
Число контуров			2												
Испаритель			Кожухотрубный теплообменник												
Количество						1									
Размер водяных патрубков вхо,	да/выхода	MM	88.9	88.9	114.3	114.3	114.3	114.3	114.3						
Вес агрегата (сухой)		КГ	2475	2470	2865	2865	2870	2870	2870						
Габариты Дл	1ина	MM	2239	2239	3339	3339	3339	3339	3339						
. Ш	ирина	MM	2234	2234	2234	2234	2234	2234	2234						
Be	ысота	MM	2223	2223	2223	2223	2223	2223	2223						
Электропитание Ү1		В				3~, 400 В, 50 Гц									

МОДЕЛЬ	EWAD-D-HS	340	380	420	450	480	510	550	590
Холодопроизводительность	кВт	334	379	413	446	476	512	545	585
Потребляемая мощность	кВт	122	129	143	152	164	177	185	194
Коэффициент EER		2.75	2.93	2.90	2.93	2.89	2.89	2.95	3.02
Уровень звукового давления	дБА	77	79	77	78	78	78	79	80
Компрессор				Одновинто	вой компрессор с плавны	и регулированием произво	дительности		
Количество						2			
Минимальная производительн	юсть %					13			
Хладагент					R-	134a			
Число контуров						2			
Испаритель					Кожухотрубны	й теплообменник			
Количество						1			
Размер водяных патрубков вх	ода/выхода мм	114.3	114.3	139.7	139.7	139.7	139.7	139.7	139.7
Вес агрегата (сухой)	КГ	3185	3185	3277	3942	4356	4361	4361	4366
Габариты Д]лина мм	4040	4040	4040	4940	4940	4940	4940	4940
	Ширина мм	2234	2334	2334	2334	2334	2334	2334	2334
E	Высота мм	2223	2223	2223	2223	2223	2223	2223	2223
Электропитание Ү1	В				3~. 400	В. 50 Гц			

EWWD-G-SS

Чиллеры с водяным охлаждением конденсатора

пульт MicroTech III

EWWD-G-SS

- Одновинтовой компрессор с плавным регулированием производительности
- Специальное исполнение компрессора и теплообменных аппаратов для оптимизации работы на озонобезопасном хладагенте R-134a.
- Электронный пульт управления с возможностью интеграции агрегата в единую систему управления зданием (BMS) по протоколам BACnet, Modbus и LonWorks.
- Многокомпрессорные агрегаты с независимыми холодильными контурами.
- Конденсаторы кожухотрубные теплообменники.

- Испарители кожухотрубные теплообменники (однозаходные по хладагенту) в общем корпусе.
- Компактная серия агрегатов небольшая занимаемая площадь.
- Простота монтажа, пуско-наладки и удобство обслуживания.
- Для агрегата стандартного исполнения рабочий диапазон температуры воды на выходе из конденсатора от +25 °C до +50 °C; диапазон температур охлаждаемого теплоносителя (вода/растворы гликолей) от -8 °C до +15 °C (температура на выходе из испарителя).
- Диапазон холодопроизводительности от 165 до 564 кВт (ЕЕR~3.9) с уровнем звукового давления на расстоянии 1 м от 70 до 71,5 дБА.

модель	EWWD-G-SS	170	210	260	300	320	380	420	460	500	600		
Холодопроизводительность	кВт	165	200	252	279	332	370	401	446	492	564		
Теплопроизводительность	кВт	209	253	319	357	420	467	506	566	626	710		
Потребляемая мощность (охлаждение)	кВт	43.8	52.6	67.4	78.5	87.5	96.4	105.4	119.3	133.9	157.0		
Потребляемая мощность (нагрев)	кВт	43.8	52.6	67.4	78.5	87.5	96.4	105.0	119.0	134.0	157.0		
Коэффициент EER		3.77	3.80	3.74	3.55	3.80	3.84	3.80	3.74	3.68	3.53		
Коэффициент СОР		4.77	4.80	4.74	4.55	4.80	4.84	4.80	4.74	4.68	4.53		
Уровень звукового давления	дБА	70	70	70	70	72	72	72	72	72	72		
Компрессор				()дновинтовой комг	прессор с плавны	и регулированием	производительно	СТИ				
Количество			1 2										
Минимальная производительность	%			25					13				
Хладагент						R-	134a						
Число контуров				1					2				
Испаритель		Кожухотрубный теплообменник											
Количество		1	1	1	1	1	1	1	1	1	1		
Размер водяных патрубков входа/выхода	MM	88.9	88.9	114.3	114.3	114.3	114.3	114.3	139.7	139.7	139.7		
Конденсатор						Кожухотрубны	й теплообменник						
Количество		1	1	1	1	2	2	2	2	2	2		
Размер водяных патрубков входа/выхода	MM	5	5	5	5	5	5	5	5	5	5		
Вес агрегата (сухой)	КГ	1393	1410	1503	1503	2687	2697	2702	2757	2762	2762		
Габариты	Длина мм	3435	3435	3435	3435	4305	4305	4305	4305	4305	4305		
·	920	920	920	920	860	860	860	860	860	860			
	1860 1860 1860 1860 1880 <td< td=""></td<>												
Электропитание Ү1					3~, 400	В, 50 Гц							

EWWD-G-XS

Чиллеры с водяным охлаждением конденсатора

пульт MicroTech III

EWWD-G-XS

- Высокоэффективное исполнение
- Одновинтовой компрессор с плавным регулированием производи-
- Специальное исполнение компрессора и теплообменных аппаратов для оптимизации работы на озонобезопасном хладагенте R-134a.
- Электронный пульт управления с возможностью интеграции агрегата в единую систему управления зданием (BMS) по протоколам BACnet, Modbus и LonWorks.
- Многокомпрессорные агрегаты с независимыми холодильными контурами.
- Конденсаторы кожухотрубные теплообменники.


- Испарители кожухотрубные теплообменники (однозаходные по хладагенту) в общем корпусе.
- Компактная серия агрегатов небольшая занимаемая площадь.
- Простота монтажа, пуско-наладки и удобство обслуживания.
- Для агрегата стандартного исполнения рабочий диапазон температуры воды на выходе из конденсатора от +25 °C до +50 °C; диапазон температур охлаждаемого теплоносителя (вода/растворы гликолей) от -8 $^{\circ}$ C до +15 $^{\circ}$ C (температура на выходе из испарителя).
- Диапазон холодопроизводительности от 185 до 602 кВт (EER~4.5) с уровнем звукового давления на расстоянии 1 м от 70 до 72 дБА.

МОДЕЛЬ	E'	WWD-G-XS	190	230	280	320	380	400	460	500	550	650	
Холодопроизводительность		кВт	185	222	276	306	365	407	443	495	539	602	
Теплопроизводительность		кВт	226	272	337	379	446	496	540	602	657	743	
Потребляемая мощность (охлаждение)		кВт	40.6	49.4	61.0	73.3	81.1	89.0	97.0	107.3	117.4	141.0	
Потребляемая мощность (нагрев)		кВт	40.6	49.4	61.0	73.3	81.1	89.0	97.0	107.0	117.0	141.0	
Коэффициент EER			4.57	4.50	4.53	4.17	4.50	4.58	4.57	4.61	4.59	4.26	
Коэффициент СОР			5.57	5.50	5.53	5.17	5.50	5.58	5.57	5.61	5.59	5.26	
Уровень звукового давления		дБА	70	70	70	70 72 72 72 72 72 72						72	
Компрессор					()дновинтовой комг	прессор с плавны	и регулированием	производительно	СТИ			
Количество				1 2									
Минимальная производительность	я производительность % 25 13												
Хладагент	1 1						R-	134a					
Число контуров					1					2			
Испаритель			Кожухотрубный теллообменник										
Количество			1	1	1	1	1	1	1	1	1	1	
Размер водяных патрубков входа/выхода		MM	114.3	114.3	114.3	114.3	139.7	168.3	168.3	168.3	168.3	168.3	
Конденсатор							Кожухотрубны	й теплообменник					
Количество			1	1	1	1	2	2	2	2	2	2	
Размер водяных патрубков входа/выхода		MM	5	5	5	5	5	5	5	5	5	5	
Вес агрегата (сухой)	КГ	1650	1665	1680	1680	2800	2945	2955	2975	2990	2990		
Габариты	MM	3435	3435	3435	3435	4305	4305	4305	4305	4305	4305		
•	MM	920	920	920	920	860	860	860	860	860	860		
	MM	1860	1860	1860	1860	1880	1880	1880	1880	1880	1880		
Электропитание Y1 В 3~, 400 В, 50 Гц													

EWWD-H-XS


Чиллеры с водяным охлаждением конденсатора

R-134a

пульт MicroTech III

EWWD-H-XS

- Одновинтовой компрессор с плавным регулированием производи-
- Специальное исполнение компрессора и теплообменных аппаратов для оптимизации работы на озонобезопасном хладагенте R-134a.
- Электронный пульт управления с возможностью интеграции агрегата в единую систему управления зданием (BMS) по протоколам BACnet, Modbus и LonWorks.
- Кожухотрубные теплообменники заполненного типа.
- Серия агрегатов имеет компактные размеры и не требует много площади для установки.
- Простота монтажа, пуско-наладки и удобство обслуживания.

- Широкий рабочий диапазон. Для агрегата стандартного исполнения температуры воды на выходе из конденсатора **от +18°C до +65** °C, температура охлаждаемого теплоносителя на выходе из испарителя от -8 °C до +15 °C.
- Диапазон холодопроизводительности от 368 до 1212 кВт (EER~6.0) с уровнем звукового давления на расстоянии 1 м от 78 до 84 дБА.
- Большой набор опций и аксессуаров.

			1	1	1	1	1	1	1	1	1	
МОДЕЛЬ	EWWD-H-XS	370	450	530	610	750	830	930	980	C10	C11	C12
Холодопроизводительность	кВт	368	444	520	606	746	825	930	977	1049	1130	1212
Теплопроизводительность	кВт	432	520	608	709	873	965	1083	1142	1225	1321	1416
Потребляемая мощность (охлаждение)	кВт	63.9	76.6	88.3	703	127	140	153	166	177	190	204
Потребляемая мощность (нагрев)	кВт	63.9	76.6	88.3	103	127	140	153	166	177	190	204
Коэффициент EER		5.75	5.79	5.88	5.9	5.85	5.88	6.06	5.9	5.94	5.94	5.95
Коэффициент СОР		6.75	6.79	6.88	6.9	6.85	6.88	7.06	6.9	6.94	6.94	6.95
Уровень звукового давления	дБА	78	79	80	80	81	82	82	83	83	84	84
Компрессор					Одновинтово	ой компрессор с	плавным регули	рованием произ	водительности			
Количество			1 2									
Минимальная производительность	%		25 12.5									
Хладагент							R-134a					
Число контуров			1									
Испаритель		Затопленный кожухотрубный теплообменник										
Количество							1					
Размер водяных патрубков входа/выхода	MM	16	68.3					219.7				
Конденсатор						Затопленный	кожухотрубный	теплообменник				
Количество							1					
Размер водяных патрубков входа/выхода	MM		6						8			
Вес агрегата (сухой)	КГ	3089	3370	3603	3781	5289	5375	5654	5707	6066	6105	6156
Габариты Длиг	ia mm	2121	2121	2121	2048	2048	2048	2048	2048	2161	2161	2161
Шир	ина мм	1353	1353	1353	1384	1689	1689	1711	1711	1711	1711	1711
Выс	3341 3341 3419 3417 3609 3609 3609 3609 3509 3509 3509 3509											
Электропитание Ү1						3~, 400 В, 50 Г	1					

EWWD-I-SS

Чиллеры с водяным охлаждением конденсатора

- Диапазон охлаждения: 332-1503 кВт.
- Диапазон EER: 4.22-4.51.
- Одновинтовой компрессор с бесступенчатым регулированием мощности.
- Конструкция оптимизирована для работы с хладагентом R-134a.
- 1-2-3 полностью независимых контура.

- Стандартный электронный расширительный клапан.
- Кожухотрубный испаритель DX однопроходная сторона хладагента для минимизации падения давления.
- Имеется опция с частичной или полной рекуперацией теплоты.
- Все модели соответствуют положениям Европейской Директивы по безопасности оборудования, работающего под давлением (PED).

ТОЛЬКО ОХЛАЖДЕНИЕ ИЛИ ТОЛЬКО НАГРЕВ

МОДЕЛЬ	EWWD-I-SS	340	400	460	550	650	700	800	850	900	
Холодопроизводительность	кВт	332	392	458	536	637	703	779	841	907	
Теплопроизводительность	кВт	405	481	562	660	783	863	955	1032	1112	
Потребляемая мощность (охлаждение)	кВт	73.5	88.6	104.2	124.3	145.7	160.3	176.4	191.1	205.4	
Потребляемая мощность (нагрев)	кВт	73.5	88.6	104	124	146	160	176	191	205	
Коэффициент EER	·	4.51	4.43	4.39	4.31	4.37	4.38	4.41	4.4	4.42	
Коэффициент СОР		5.51	5.43	5.39	5.31	5.37	5.38	5.41	5.4	5.42	
Уровень звукового давления	дБА	75	76	78	78	78	78	79	80	81	
Компрессор			Одновинтовой с плавным регулированием								
Количество				1				2			
Минимальная производительность											
Хладагент	·		R-134a								
Число контуров			1 2								
Испаритель					Кож	хотрубный теплообі	менник				
Размер водяных патрубков входа/выхода	MM	168.3	168.3	168.3	168.3	168.3	168.3	168.3	168.3	168.3	
Конденсатор					Кож	хотрубный теплообі	менник				
Размер водяных патрубков входа/выхода	дюйм	5	5	5	5	5	5	5	5	5	
Вес агрегата (сухой)	КГ	2150	2160	2179	2224	3909	3927	3945	3971	3996	
Габариты Длі	ина мм	3298	3298	3298	3298	4116	4116	4116	4116	4116	
	рина мм	1466	1466	1466	1466	1350	1350	1350	1350	1350	
Вы	1821 1821 1821 1821 2103 2103 2103 2103 2103										
Электропитание Ү1	В					3~, 400 В, 50 Гц					

модель	EWV	VD-I-SS	950	C10	C12	C13	C14	C15	C16	C17	C18			
Холодопроизводительность		кВт	982	1024	1151	1200	1270	1341	1395	1449	1503			
Теплопроизводительность		кВт	1207	1267	1412	1475	1560	1648	1721	1793	1886			
Потребляемая мощность (охлаждение)		кВт	224.7	242.6	261.6	275.1	289.8	307	325.5	344.3	363			
Потребляемая мощность (нагрев)		кВт	225	243	262	275	290	307	325	344	363			
Коэффициент EER			4.37	4.22	4.4	4.36	4.38	4.37	4.29	4.21	4.14			
Коэффициент СОР			5.37	5.22	5.4	5.36	5.38	5.37	5.29	5.21	5.14			
Уровень звукового давления		дБА	81	81	80	81	81	83	83	83	83			
Компрессор						Одновинто	овой с плавным регу	пированием						
Количество						2 3								
Минимальная производительность % 13 8														
Хладагент			R-134a											
Число контуров			2 3											
Испаритель						Кожу	хотрубный теплооб)	менник						
Размер водяных патрубков входа/выхода		MM	1	68.3				219.1						
Конденсатор						Кожу	хотрубный теплооб)	менник						
Размер водяных патрубков входа/выхода		ДЮЙМ	5	5	5	5	5	5	5	5	5			
Вес агрегата (сухой)	КГ	4080	4092	6079	6097	6136	6174	6192	6210	6228				
Габариты	MM	4116	4116	4439	4439	4439	4439	4439	4439	4439				
•	MM	1350	1350	2130	2130	2130	2130	2130	2130	2130				
	MM	2103 2103 2323 2323 2323 2323 2323 2323								2323				
Электропитание Ү1		В					3~, 400 В, 50 Гц							

Чиллеры с водяным охлаждением конденсатора

• Диапазон охлаждения: 360-1130 кВт.

• Высокоэффективное исполнение.

- Диапазон EER: 4.50-4.85.
- Одновинтовой компрессор с бесступенчатым регулированием мощности
- Конструкция оптимизирована для работы с хладагентом R-134a.

пульт MicroTech III

EWWD-I-XS

- 1 или 2 полностью независимых контура охлаждения.
- Стандартный электронный расширительный клапан.
- Кожухотрубный испаритель DX однопроходная сторона хладагента для минимизации падения давления.
- Все модели соответствуют положениям Европейской Директивы по безопасности оборудования, работающего под давлением (PED).

ТОЛЬКО ОХЛАЖДЕНИЕ ИЛИ ТОЛЬКО НАГРЕВ

МОДЕЛЬ		EWWD-I-XS	360	440	500	600	750	800					
Холодопроизводительность		кВт	360	431	504	570	717	791					
Теплопроизводительность		кВт	435	520	608	697	865	955					
Потребляемая мощность (охлаждение)		кВт	74.5	89.5	104.5	126.8	147.9	163.4					
Потребляемая мощность (нагрев)		кВт	74.5	89.5	104	127	148	163					
Коэффициент EER			4.83	4.82	4.82	4.50	4.85	4.84					
Коэффициент СОР			5.83	5.82	5.82	5.50	5.85	5.84					
Уровень звукового давления		дБА	75	76	78	78	78	78					
Компрессор				Одновинтовой с плавным регулированием									
Количество					1	2							
Минимальная производительность		%		2	25			13					
Хладагент				R-134a									
Число контуров					1			2					
Испаритель					Кожухотрубны	й теплообменник							
Размер водяных патрубков входа/выхода		MM	168.3	168.3	168.3	168.3	219.1	219.1					
Конденсатор					Кожухотрубны	й теплообменник							
Размер водяных патрубков входа/выхода		дюйм	5	5	5	5	5	5					
Вес агрегата (сухой)		КГ	2594	2667	2704	2704	4964	4997					
Габариты	Длина	MM	4012	4012	4012	4012	4782	4782					
,	Ширина	MM	1430	1430	1430	1430	1350	1350					
	MM	1883	1883	1883	1883	2245	2245						
Электропитание Ү1		В			3~. 400	В, 50 Гц							

модель	EW	WD-I-XS	850	950	C10	C11	C12					
Холодопроизводительность		кВт	863	929	971	1035	1130					
Теплопроизводительность		кВт	1040	1122	1180	1263	1380					
Потребляемая мощность (охлаждение)		кВт	177.8	193.1	208.4	228.3	250					
Потребляемая мощность (нагрев)		кВт	178	193	208	228	250					
Коэффициент EER			4.85	4.81	4.66	4.53	4.51					
Коэффициент СОР			5.85	5.81	5.66	5.53	5.51					
Уровень звукового давления		дБА	79	80	81	81	81					
Компрессор				O,	дновинтовой с плавным регулирован	ием						
Количество					2							
Минимальная производительность		%	13									
Хладагент			R134a									
Число контуров			2									
Испаритель					Кожухотрубный теплообменник							
Размер водяных патрубков входа/выхода		MM			219.1							
Конденсатор					Кожухотрубный теплообменник							
Размер водяных патрубков входа/выхода		ДЮЙМ	5	5	5	5	5					
Вес агрегата (сухой)		КГ	5049	5073	5097	5132	5132					
Габариты	Длина	MM	4782	4782	4782	4782	4782					
north and a second	Ширина	MM	1350	1350	1350	1350	1350					
	Высота	MM	2245 2245 2245 2245 2245									
Электропитание Ү1		В	3∼, 400 В, 50 Гц									

EWWD-J-SS

Чиллеры с водяным охлаждением конденсатора

пульт MicroTech III

EWWD-J-SS

- Одновинтовой компрессор с плавным регулированием производительности.
- Специальное исполнение компрессора и теплообменных аппаратов для оптимизации работы на озонобезопасном хладагенте R-134a.
- Электронный пульт управления с возможностью интеграции агрегата в единую систему управления зданием (BMS) по протоколам BACnet, Modbus и LonWorks.
- Серия агрегатов имеет компактные размеры и не требует много площади для установки.
- Простота монтажа, пуско-наладки и удобство обслуживания.
- Широкий рабочий диапазон. Для агрегата стандартного исполнения температуры воды на выходе из конденсатора от +18°C до +65 °C, температура охлаждаемого теплоносителя на выходе из испарителя от -8 °C до +15 °C.
- Диапазон холодопроизводительности от 120 до 570 кВт (ЕЕR~4.4) с уровнем звукового давления на расстоянии 1 м от 70 до 71,5 дБА.
- Большой набор опций и аксессуаров.

МОДЕЛЬ	EWWD-J-SS	120	140	150	180	210	250	280	310	330	360	380	400	450	500	530	560	
Холодопроизводительность	кВт	120	146	155	178	208	256	285	310	334	357	386	416	464	513	541	570	
Теплопроизводительность	кВт	142	172	188	216	249	305	340	377	405	432	466	499	554	610	645	681	
Потребляемая мощность (охлаждение)	кВт	27.3	33.3	38.5	44.2	49.3	58.7	68.3	77.0	82.7	88.4	98.6	98.6	108.0	117.0	127.0	137.0	
Потребляемая мощность (нагрев)	кВт	32.9	40.1	46.4	53.5	59.57	71.68	80.75	92.88	99.9	107.0	113.0	119.0	131.0	143.0	152.0	162.0	
Коэффициент EER		4.40	4.38	4.03	4.03	4.22	4.37	4.18	4.03	4.04	4.04	3.91	4.22	4.30	4.38	4.26	4.16	
Коэффициент СОР			4.29	4.05	4.04	4.18	4.26	4.21	4.06	4.05	4.04	4.12	4.19	4.22	4.26	4.23	4.23	
ровень звукового давления дБА			71.4 70.0								74.4	.4 73.8 73.0						
Компрессор			Одновинтовой компрессор															
Количество										2								
Минимальная производительность %			25.0 12.5															
Хладагент			R-134a															
Число контуров			1 2															
Испаритель			Паяный пластигнатый теплообменник															
Количество		1 2																
Размер водяных патрубков входа/выхода	76.2																	
Конденсатор			Кожухотрубный теплообменник							Двухходовой кожухотрубный теплообменник								
Количество			1							2								
Размер водяных патрубков входа/выхода мм		21/2 4*																
Вес агрегата (сухой)	КГ	1177	1233	1334	1366	1416	1600	1607	2668	1700	1732	2782	2832	3016	3200	3207	3215	
Габариты Длин	а мм	1020 2000																
Ширі	ина мм								9	113								
Высо	та мм								26	584								
Электропитание Y1 В						3~, 400 В, 50 Гц												


EWWQ-B-SS

Чиллеры с водяным охлаждением конденсатора

EWWQ-B-SS

- Одновинтовой компрессор с ассиметричным плавным регулированием производительности.
- Специальное исполнение компрессора и теплообменных аппаратов для оптимизации работы на озонобезопасном хладагенте R-410A.
- Электронный пульт управления с возможностью интеграции агрегата в единую систему управления зданием (BMS) по протоколам BACnet, Modbus и LonWorks.
- 1- и 2-компрессорные агрегаты с независимыми холодильными контурами
- Испаритель кожухотрубный теплообменник.
- Конденсаторы кожухотрубные теплообменники, один на холодильный контур.

- Компактная серия агрегатов небольшая занимаемая площадь.
- Простота монтажа, пуско-наладки и удобство обслуживания.
- Для агрегата стандартного исполнения рабочий диапазон температуры воды на выходе из конденсатора от +45 °C до +25 °C; диапазон температур охлаждаемого теплоносителя (вода / растворы гликолей) от -4 °C до +10 °C (температура на выходе из испарителя).
- В стандартном исполнении 19 типоразмеров холодопроизводительностью от 379 до 2055 кВт (ESEER~5,64).

ТОЛЬКО ОХЛАЖДЕНИЕ

СТАНДАРТНАЯ МОДЕ	ЛЬ	EWWQ-B-SS	380	460	560	640	730	800	860	870	960					
Холодопроизводительность		кВт	379	462	560	635	724	793	859	868	956					
Потребляемая мощность		кВт	89.2	109	133	150	170	179	207	1 2 25 25 25 1 1 2 1 2 25 25 25						
Эффективность EER			4.24	4.24	4.21	4.22	4.25	4.42	4.38							
Уровень звукового давления		дБА	82	83	84	84	83	84	85	85	85					
Компрессор					Однови	нтовой компрессор	с плавным регулиро	ванием производите	ельности							
Количество					1			2	1		2					
Минимальная холодопроизводитель	ность	%			12.5			25	12.5	2	25					
Холодильный агент							R-410A									
Число контуров										2						
Испаритель						Кожу	хотрубный теплообы	ленник								
Количество	Одновинтовой компресс 1 1000/380 дительность					1	1	1	1	1	1					
Размер водяных патрубков входа/вь	ь			152.4	203.2	203.2	203.2	203.2	203.2	203.2	203.2					
Конденсатор						Кожу	хотрубный теплообы	иенник								
Количество			1	1	1	1	1	2	1	2	2					
Размер водяных патрубков входа/вь	хода	Дюйм	5	5	6	6	5	5	5	5	5					
Вес агрегата (сухой)		КГ	1933	1967	2283	2332	2407	3921	2427	3949	3988					
	Ширина	MM	3373	3373	3454	3454	3535	5020	2001	5020	5020					
Габариты	Длина	MM	1140	1140	1276	1276	1314	1350	1314	1350	1350					
	Высота	MM	1849	1849	2001	2001	1848	2158	1848	2158	2158					
Электропитание Ү1		В					3~, 400 В, 50 Гц									

СТАНДАРТНАЯ МОДЕЛЬ		EWWQ-B-SS	C10	C11	C12	C13	C14	C15	C16	C17	C19	C20
Холодопроизводительность		кВт	1003	1050	1181	1251	1320	1452	1595	1754	1896	2055
Потребляемая мощность		кВт	247	243	268	285	303	337	373	407	441	477
Эффективность EER			4.07	4.32	4.41	4.38	4.35	4.31	4.28	4.31	4.3	4.31
Уровень звукового давления		дБА	86	86	87	87	87	86	87	87	88	88
Компрессор					(Эдновинтовой комі	прессор с плавны	м регулированием	производительно	СТИ		
Количество			1					2				
Минимальная холодопроизводительности)	%	12.5					25				
Холодильный агент							R-	410A				
Число контуров			1					2				
Испаритель							Кожухотрубны	й теплообменник				
Количество			1	1	1	1	1	1	1	1	1	1
Размер водяных патрубков входа/выхода		MM	203.2	203.2	254	254	254	254	254	254	254	254
Конденсатор							Кожухотрубны	й теплообменник				
Количество			1	2	2	2	2	2	2	2	2	2
Размер водяных патрубков входа/выхода		Дюйм	5	6	6	6	6	5	5	5	5	5
Вес агрегата (сухой)		КГ	2457	4344	4529	4536	4607	4988	4999	5053	5204	5289
	Длина	MM	2001	4894	5070	5070	5070	4892	4892	4892	4865	4865
бариты	Ширина	MM	1314	1350	1350	1350	1350	1350	1350	1350	1350	1350
	Высота	MM	1848	2378	2455	2455	2455	2495	2495	2495	2495	2495
Электропитание Ү1		В					3~. 400) В. 50 Гц				

EWWQ-B-XS

Чиллеры с водяным охлаждением конденсатора

- Высокоэффективное исполнение.
- Одновинтовой компрессор с ассиметричным плавным регулированием производительности.
- Специальное исполнение компрессора и теплообменных аппаратов для оптимизации работы на озонобезопасном хладагенте R-410A.
- Электронный пульт управления с возможностью интеграции агрегата в единую систему управления зданием (BMS) по протоколам BACnet, Modbus и LonWorks.
- 1- и 2-компрессорные агрегаты с независимыми холодильными контурами.
- Испаритель кожухотрубный теплообменник.

- Конденсаторы кожухотрубные теплообменники, один на холодильный контур.
- Компактная серия агрегатов небольшая занимаемая площадь.
- Простота монтажа, пуско-наладки и удобство обслуживания.
- Рабочий диапазон температуры воды на выходе из конденсатора от +45 °C до +25 °C; диапазон температур охлаждаемого теплоносителя (вода / растворы гликолей) от -4 °C до +10 °C (температура на выходе из испарителя).
- В высокоэффективном исполнении 17 типоразмеров холодопроизводительностью от 420 до 2156 кВт (ESEER~6.28).

ТОЛЬКО ОХЛАЖДЕНИЕ

ВЫСОКОЭФФЕКТИВНАЯ МОДЕ	ЛЬ Е	WWQ-B-XS	420	520	640	730	800	970	C10	C11	C12
Холодопроизводительность		кВт	420	513	636	722	798	969	1033	1111	1153
Потребляемая мощность		кВт	88.7	107	131	149	166	201	213	239	238
Эффективность EER			4.74	4.79	4.84	4.83	4.81	4.81	4.86	4.64	4.85
Уровень звукового давления		дБА	82	83	84	84	83	84	86	85	86
Компрессор					Однови	нтовой компрессор	с плавным регулиро	ванием производит	ельности		
Количество						1			2	1	2
Минимальная холодопроизводительность		%			1	2.5			25	12.5	25
Холодильный агент							R-410A				
Число контуров						1			2	1	2
Испаритель						Кожу	хотрубный теплооби	иенник			
Количество			1	1	1	1	1	1	1	1	1
Размер водяных патрубков входа/выхода		MM	152.4	152.4	152.4	203.2	203.2	254.0	203.2	254.0	203.2
Конденсатор						Кожу	хотрубный теплооби	ленник			
Количество			1	1	1	1	1	1	2	1	2
Размер водяных патрубков входа/выхода		Дюйм	8	8	8	6	6	6	5	6	5
Вес агрегата (сухой)		КГ	2322	2403	2464	2738	2407	2427	4775	2457	4831
	Ширина	MM	3863	3863	3863	3878	3878	3919	5219	3919	5219
Габариты	Длина	MM	1276	1276	1276	1268	1314	1446	1350	1446	1350
1	Высота	MM	2001	2001	2001	2001	2003	2003	2454	2003	2454
Электропитание Ү1		В					3~, 400 В, 50 Гц				

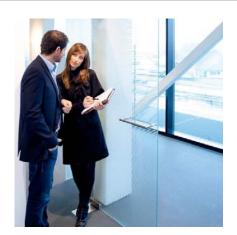
высокоэффективная модел	1Ь EWWQ-B-XS	C13	C14	C15	C16	C18	C19	C20	C21		
Холодопроизводительность	кВт	1256	1363	1442	1580	1740	1870	2025	2156		
Потребляемая мощность	кВт	262	281	299	324	361	397	436	474		
Эффективность EER		4.83 4.85 4.83 4.88 4.81 4.71 4.64 4.5 дБА 87 87 87 86 87 87 88 88 Одновинтовой компрессор с плавным регулированием производительности 2 25 R-410A 2 Комухотрубный теппообменник 1									
Уровень звукового давления	дБА	87	87	87	86	87	87	88	88		
Компрессор				Одновинтовой	компрессор с плавны	и регулированием прои	изводительности				
Количество						2					
Минимальная холодопроизводительность	%					25					
Холодильный агент					R-	110A					
число контуров											
Испаритель					Кожухотрубны	й теплообменник					
Количество		1	1	1	1	1	1	1	1		
Размер водяных патрубков входа/выхода	MM	203.2	203.2	254.0	254.0	254.0	254.0	254.0	254.0		
Конденсатор					Кожухотрубны	й теплообменник					
Количество		2	2	2	2	2	2	2	2		
Размер водяных патрубков входа/выхода	Дюйм	5	6	6	8	8	8	8	8		
Вес агрегата (сухой)	КГ	4873	4919	4969	5117	5117	5388	5408	5414		
	Длина мм	5219	5219	5219	4829	4829	4829	4865	4865		
Габариты	Ширина мм	1350	1350	1350	1350	1350	1350	1350	1350		
	Высота мм	2454	2454	2454	2495	2495	2495	2495	2495		
Электропитание Ү1	В				3~, 400	В, 50 Гц					

^{*} Информация на момент публикации отсутствует.

EWLD-G-SS

Чиллеры с выносным конденсатором

пульт MicroTech III


EWLD-G-SS

- Одновинтовой компрессор с плавным регулированием производительности.
- Специальное исполнение компрессора и теплообменных аппаратов для оптимизации работы на озонобезопасном хладагенте R-134a.
- Электронный пульт управления с возможностью интеграции агрегата в единую систему управления зданием (BMS) по протоколам BACnet, Modbus и LonWorks.
- Многокомпрессорные агрегаты с независимыми холодильными контурами.
- Испарители кожухотрубные теплообменники (однозаходные по хладагенту) в общем корпусе.
- Компактная серия агрегатов небольшая занимаемая площадь.
- Простота монтажа, пуско-наладки и удобство обслуживания.
- Рабочий диапазон конденсатора от +25 °C до +50 °C; диапазон температур охлаждаемого теплоносителя (вода/растворы гликолей) от -8 °C до +15 °C (температура на выходе из испарителя).
- Диапазон холодопроизводительности от 160 до 524 кВт (холодильный коэффициент от 3,48 до 3,7) с уровнем звукового давления на расстоянии 1 м от 69,7 до 71,7 дБА.

МОДЕЛЬ		EWLD-G-SS	160	190	240	280	320	360	380	420	480	550
Холодопроизводительность		кВт	160	188	243	269	315	350	379	426	474	524
Потребляемая мощность		кВт	46.1	55.3	66.8	75.7	92.1	101.3	110.5	121.7	133.4	150
Коэффициент EER			3.47	3.40	3.64	3.55	3.42	3.46	3.43	3.50	3.55	3.48
Уровень звукового давления		дБА	69.7	69.7	69.7	69.7	71.7	71.7	71.7	71.7	71.7	71.7
Компрессор					(Эдновинтовой комі	прессор с плавны	и регулированием	производительно	сти		
Количество					1					2		
Минимальная производительность		%		2	5.0				1	2.5		
Хладагент							R-	134a				
Число контуров					1					2		
Испаритель						Кожух	отрубные теплооб	менники в общем	корпусе			
Количество								1				
Размер водяных патрубков входа/вы	ыхода	MM	88.9	88.9	114.3	114.3	114.3	114.3	114.3	139.7	139.7	139.7
Вес агрегата (сухой)		КГ	1280	1280	1398	1398	2442	2446	2446	2501	2506	2506
Габариты	Длина	MM	3700	3700	3700	3700	4400	4400	4400	4400	4400	4400
	Ширина	MM	1000	1000	1000	1000	1100	1100	1100	1100	1100	1100
	Высота	MM	1860	1860	1860	1860	1860	1942	1942	1942	1942	1942
Электропитание Ү1	·	В					3~. 400	В. 50 Гц				

EWLD-J-SS

Чиллеры с выносным охлаждением конденсатора

пульт MicroTech III

EWLD-J-SS

- Компактный дизайн позволяет устанавливать оборудование в помещении.
- Диапазон охлаждения от 109 до 628 кВт.
- Высокий коэффициент энергоэффективности ЕЕР до 3.59.
- Одновинтовой компрессор с плавной регулировкой производительности.
- Конструкция оптимизирована для работы с хладагентом R-134a.
- Высокая эффективность в режиме полной или частичной нагрузки.
- Температура охлажденной воды до -10°C для стандартных блоков.
- 1 или 2 полностью независимых контура с пластинчатым теплообменником на каждый контур.
- В стандартной комплектации электронный расширительный клапан.

ТОЛЬКО ОХЛАЖДЕНИЕ

МОДЕЛЬ	E	WLD-J-SS	110	130	145	165	195	235	265	290
Номинальная производительность	охлаждение	кВт	109	127	143	164	191	236	264	285
Потребляемая мощность	охлаждение	кВт	31.1	38.2	43.8	50.4	56.0	65.9	75.3	87.5
Коэффициент EER (охлаждение)			3.52	3.33	3.25	3.25	3.25	3.59	3.51	3.26
Габариты	(ВхШхГ)	MM				1020x913x2684				2000x913x2684
Вес агрегата (сухой)					1237	1263	1305	1489	1489	2474
Уровень звуковой мощности (стандарт. / с шумопо	овень звуковой мощности (стандарт. / с шумопоглощ. панелями – опция) дБА				88.6			8	7.2	92.4
Рабочий диапазон температур – испаритель		°C				-10 °C	~ 15 °C			
Рабочий диапазон температур – конденсатор / тем	пература конденсации	°C				25 ℃	~ 60 °C			
Тип хладагента						R-	134a			
араметры электропитания Ү1						3~,400	В, 50 Гц			
Размеры водяных патрубков	раметры электропитания [11						3"			

МОДЕЛЬ	E	WLD-J-SS	310	330	360	390	430	470	500	530
Номинальная производительность	охлаждение	кВт	306	327	355	382	427	473	501	528
Потребляемая мощность	охлаждение	кВт	94.0	100	106	112	122	131	141	150
Коэффициент EER (охлаждение)			3.26	3.26	3.34	3.42	3.51	3.60	3.56	3.52
Габариты	(ВхШхГ)	MM				2000x913x2684				
Вес агрегата (сухой)	КГ	2500	2526	2568	2611	2795	2979	2979	2979	
Уровень звуковой мощности (стандарт. / с ш	овень звуковой мощности (стандарт. / с шумопоглощ, панелями – опция) дБА				2.4		91.8		91.0	
Рабочий диапазон температур – испаритель		°C				-10 °C	~ 15 °C			
Рабочий диапазон температур – конденсатор	/ температура конденсации	°C				25 ℃	~ 60 °C			
Тип хладагента						R-1	134a			
Параметры электропитания	Y1				3~,400	В, 50 Гц				
Размеры водяных патрубков	вход / выход испарителя 31									

EWLD-I-SS

Чиллеры с выносным охлаждением конденсатора

пульт MicroTech III

EWLD-I-SS

- Диапазон охлаждения: 328 1422 кВт.
- Диапазон EER: 3.51 3.91.
- Одновинтовой компрессор с бесступенчатым регулированием мощности.
- Конструкция оптимизирована для работы с хладагентом R-134a.
- 1-2-3 полностью независимых контура.
- Стандартный электронный расширительный клапан.
- Кожухотрубный испаритель DX однопроходная сторона хладагента для минимизации падения давления.
- Имеется опция с частичной или полной рекуперацией теплоты.
- Все модели соответствуют положениям Европейской Директивы по безопасности оборудования, работающего под давлением (РЕD).

ТОЛЬКО ОХЛАЖДЕНИЕ

модель		EWLD-I-SS	320	400	420	500	600	650	750	800	850	900	950
Холодопроизводительность		кВт	328	391	428	504	596	657	730	788	850	919	966
Потребляемая мощность		кВт	83.8	100	116	137	165	181	198	214	231	252	271
Коэффициент EER			3.91	3.90	3.70	3.67	3.61	3.63	3.69	3.67	3.67	3.65	3.56
Уровень звукового давления		дБА	93.6	94.6	96.6	96.6	96.9	97.3	97.8	98.8	99.8	98.3	98.6
Рабочий диапазон температур - испаритель		°C						-8 °C ~ 15 °C					
Рабочий диапазон температур - конденсатор /те	°C						25 °C ~ 60 °C						
Тип хладагента								R-134a					
Размеры водяных патрубков	вход/выход испарителя	MM F						168.3					
Вес агрегата (сухой)		КГ	1861	1861	1869	1884	3331	3339	3347	3356	3364	3412	3412
Габариты	Длина	MM		1	899					4400			
	MM		3	114					1100				
	MM		1-	464					1942				
Электропитание Ү1	В						3~, 400 В, 50 ГL	4					

МОДЕЛЬ	1	WLD-I-SS	C10	C11	C12	C13	C14	C15	C16	C17
Холодопроизводительность		кВт	1003	1078	1125	1188	1267	1319	1370	1422
Потребляемая мощность		кВт	279	296	312	329	347	366	386	405
Коэффициент EER			3.59	3.64	3.60	3.61	3.65	3.60	3.55	3.51
Уровень звукового давления		дБА	99.8	100.6	101.2	101.8	101.8	101.8	101.8	101.8
Рабочий диапазон температур - испарител	Ь	°C				-8 °C	~ 15 °C			
Рабочий диапазон температур - конденсатор /температура конденсации										
Тип хладагента						R-	134a			
Размеры водяных патрубков	вход/выход испарителя	MM				2	19.1			
Вес агрегата (сухой)		КГ	5146	5167	5167	5188	5208	5208	5208	5208
Габариты	Длина	MM				2	415			
	Ширина	MM				4	426			
	Высота	MM				2	135			
Электропитание Ү1		В				3~. 400	В, 50 Гц			

EWWP-KBW1N EWLP-KBW1N

Чиллеры с выносным или водяным охлаждением конденсатора

µC² SE

EWLP012-065KBW1N

- Модульная конструкция.
- Минимальные установочные размеры.
- Компрессор Daikin спирального типа.
- Специальное исполнение компрессора и теплообменных аппаратов для оптимизации работы на озонобезопасном хладагенте R-407C.
- Низкий уровень шума.
- Электронный пульт управления.
- Высокая энергоэффективность.
- Высококачественное антикоррозионное покрытие деталей.
- Испаритель компактный пластинчатый теплообменник из нержавеющей стали.
- Минимальная заправка хладагентом.
- Простота монтажа и удобство обслуживания.
- Совместим с гидравлическим модулем Daikin.
- Возможность интеграции с единой системой управления зданием (BMS).

- В стандартной поставке комплектуется:
- главным выключателем;
- сетчатым фильтром;
- механическим реле протока (отсутствует на моделях EWWP045-065KBW1M);
- воздухоспускным клапаном и портами для измерения давления.
- Новый пульт дистанционного управления EKRUMCA (максимальное удаление 1000 м).
- Интеграция в систему управления зданием по протоколу Modbus осуществляется напрямую при подключении к адресной карте EKAC10C без использования шлюзов.
- К проводному пульту дистанционного управления не требуется отдельно подводить питание.

ТЕПЛОВОЙ НАСОС

МОДЕЛЬ	EWWP-KBW1N	14	22	28	35	45	55	65	90	100	110	120	130	145	155	165	175	185	195
Холодпроизводительность	кВт	12.9	21.4	27.8	32.3	42.8	55.7	64.7	85.7	98.6	112	121	130	141	154	167	176	185	194
Теплопроизводительность	кВт	16.7	27.5	35.6	41.5	55.0	71.7	83.0	110	127	143	155	166	182	198	215	226	237	249
Потребляемая мощность	кВт	3.75	6.13	7.85	9.12	12.20	16.00	18.20	24.20	28.00	31.90	34.00	36.20	40.20	43.90	47.70	49.80	52.00	54.10
Коэффициент EER (охлаждение)		3.44	3.49	3.54	3.54	3.51	3.48	3.55	3.54	3.52	3.51	3.56	3.59	3.51	3.51	3.50	3.53	3.56	3.59
Коэффициент СОР (нагрев)		4.45	4.49	4.54	4.55	4.51	4.48	4.56	4.55	4.54	4.48	4.56	4.59	4.53	4.51	4.51	4.54	4.56	4.60
Габариты (ВхШхГ)	MM		600x6	00x600		60	00x600x120	00		12	200x600x12	200				1800x6l	00x1200		
Вес агрегата (сухой)	КГ	118	155	165	172	300	320	334	600	620	640	654	668	920	940	960	974	988	1002
Уровень звуковой мощности	дБА	64	64	64	71	67	67	74	71	71	71	75	77	73	73	73	76	78	79
Рабочий диапазон температур – испаритель	°C								5°	°C (-10 °C (опция) ~ 2	0 °C							
Рабочий диапазон температур – конденсатор	°C									20 °C	~ 55 °C								
Хладагент										R-4	107C								
Параметры электропитания	W1									3~, 400	В, 50 Гц								

модель	EWLP-KBW1N	012	020	026	030	040	055	065
Номинальная производительность	кВт	12.1	20.0	26.8	31.2	40.0	53.7	62.4
Потребляемая мощность	кВт	4.2	6.6	8.5	10.1	13.4	17.8	20.3
Коэффициент EER (охлаждение)		2.88	3.03	3.15	3.09	2.99	3.02	3.07
Габариты (ВхШхГ)	MM		600x6	600x600			600x600x1200	
Вес агрегата (сухой)	КГ	108	141	147	151	252	265	274
Уровень звуковой мощности	дБА	64	64	64	71	67	67	74
Рабочий диапазон температур – испаритель	°C				-10 °C ~ 20 °C			
Рабочий диапазон температур – конденсатор	°C				25 °C ~ 60 °C			
Хладагент					R-407C			
Параметры электропитания	W1				3~, 400 В, 50 Гц			

EWWP014-035KBW1N

EWWP090-135KBW1N

EWWP145-195KBW1N

Набор блоков	- 1			1 моду	/ль (КВ-	серия)				2 моду	уля (КВ-	серия)			3 ו	модуля	(KB-cep	ия)	
Индекс производительности		014	022	028	035	045	055	065	090	100	110	120	130	145	155	165	175	185	195
Холодопроизводительность (кВт		13	21.5	28	32.5	43	56	65	86	99	112	121	130	142	155	168	177	186	195
	EWWP014KBW1N	1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Агрегат	EWWP022KBW1N	-	1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
+	EWWP028KBW1N	-	-	1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
пульт управления	EWWP035KBW1N	-	-	-	1	-	-	-	-	-	-	-	-	-	-	-	-	-	-
(устанавливается на заводе)	EWWP045KBW1N	-	-	-	-	1	-	-	-	-	-	-	-	-	-	-	-	-	-
	EWWP055KBW1N	-	-	-	-	-	1	-	-	-	-	-	-	-	-	-	-	-	-
	EWWP065KBW1N	-	-	-	-	-	-	1	-	-	-	-	-	-	-	-	-	-	-
T	EWWP045KAW1M	-	-	-	-	1	-	-	2	1	-	-	-	2	1	-	-	-	-
Только агрегат (без пульта управления)	EWWP055KAW1M	-	-	-	-	-	1	-	-	1	2	1	-	1	2	3	2	1	-
(оез пульта управления)	EWWP065KAW1M	-	-	-	-	-	-	1	-	-	-	1	2	-	-	-	1	2	3
D	ECB2MUAW	-	-	-	-	-	1	1	1	1	1	1	1	-	-	-	-	-	-
Пульт управления	ECB3MUAW	-	-	-	-	-	-	-	-	-	-	-	-	1	1	1	1	1	1

Пример: для системы производительностью 121 кВт, подбор блоков:

- 1 EWWP055KAW1M + 1EWWP065KAW1M + ECB2MUAW

EWWD-FZXS

Чиллеры с водяным охлаждением конденсатора и центробежным безмасляным компрессором

пульт MicroTech III

• Безмасляный компрессор.

- Широкий диапазон производительности от 317 до 1048 кВт.
- Центробежный компрессор с инверторным приводом.
- Высокое значение сезонного холодильного коэффициента (до 9,60).
- Встроенная интеллектуальная система управления.
- Диапазон температуры воды на выходе из конденсатора от +18 °C до +460 °C; диапазон температур охлаждаемого теплоносителя (вода/растворы гликолей) от +2 °C до +15 °C (температура на выходе из испарителя).

ТОЛЬКО ОХЛАЖДЕНИЕ ИЛИ ТОЛЬКО НАГРЕВ

МОДЕЛЬ	EV	WD-FZXS	320	430	520	640	860	C10				
Холодопроизводительность ¹		кВт	114-317	128-429	172-521	114-635	128-856	172-1048				
Manuscan up pupp Spane 12	с МИН. производительностью	кВт	21.6	27.7	33.1	21.6	27.7	33.1				
Мощность на входе блока ^{1,2}	с МАКС. производительностью	кВт	65.9	85.7	104	132	171	206				
Коэффициент EER			4.83	5.34	4.93	5.21	5.61	5.58				
Коэффициент ESEER			7.74	8.10	8.37	8.10	8.46	8.64				
Уровень звуковой мощности		дБА	89.0	90.1	91.2	92.4	93.6	94.6				
Уровень звукового давления		дБА	70.9	72.0	73.0	73.8	75.1	75.9				
Компрессор				Центробежный компрессор переменной скорости								
Количество			1	1	1	2	2	2				
Холодильный агент					R-	134a						
Число контуров			1	1	1	1	1	1				
Испаритель					Кожухотруб	ный (2 захода)						
Количество			1	1	1	1	1	1				
Вход/выход воды из испарителя		MM	168.3	219.1	219.1	219.1	219.1	273.0				
Вход/выход воды из конденсатора		MM	168.3	168.3	168.3	219.1	219.1	219.1				
Конденсатор					Кожухотрубі	ный (2 захода)						
Количество			1	1	1	1	1	1				
Вес агрегата (сухой) кг			2360	2546	2546	3709	4095	4765				
Габариты	Длина	MM	1276	1276	1276	1790	1853	1904				
•	Ширина	MM	3254	3419	3419	3441	3289	3401				
Высота		MM	1823	1823	1823	1755	1748	1794				
Электропитание Ү1		В			3~, 400	В, 50 Гц						

¹ Центробежный чиллер без масла вырабатывает разную холодопроизводительность, потребляемую мощность, EER и др. (в контролируемых условиях воды испарителя и конденсатора) в зависимости от скорости вращения компрессора. Цифры в таблице исходят из следующих стандартных условиях и при определённой скорости. Для выбора блоков и подсчёта эксплуатационных характеристик в определённых рабочих условиях имеется специальный инструмент (EWWD-FZ ПО выбора)

² В сдвоенных компрессорных блоках минимальная производительность связана с наличием всего одного работающего компрессора.

DWME

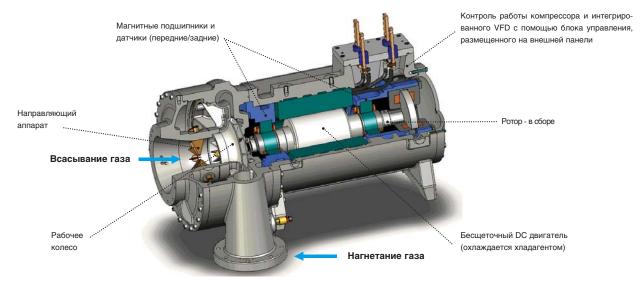
Чиллеры с водяным охлаждением конденсатора и центробежным безмасляным компрессором

R-134a

Широкий выбор значений производительности и комплектации:

- Производительность от 1400 до 1900 кВт.
- Приблизительно 1,1 миллион возможных комбинаций компонентов чиллера (моторов, турбин, теплообменных аппаратов).

Высокая энергоэффективность - один из самых высоких коэффициентов энергоэффективности в отрасли: коэффициент энергоэффективности EER до 6.6, сезонный коэффициент энергоэффективности ESEER до 10 в сочетании с регулятором скорости вращения (VFD).


Магнитные подшипники: отсутствие потерь на трение по сравнению с обычными подшипниками и отсутствие контура смазки и сопутствующего оборудования (масляный насос, масляный фильтр, масляный нагреватель и т.д.).

Повышен срок службы: оценивается в 25-30 лет.

Мягкий старт. Пусковой ток составляет около 2 А для обеспечения левитации вала, и только потом постепенно нарастает и запускает компрессор. Это обеспечивает низкие пусковые токи (например, для одновинтовых компрессоров пусковые токи составляют от 500 до 600А) и низкие механические нагрузки на компрессор.

Регулятор скорости вращения (VFD), поставляемый дополнительно.

- Автоматическая регулировка скорости в соответствии с нагрузкой и с оптимизацией энергоэффекти.
- Уменьшено годовое энергопотребление.
- Возможность уменьшения загрузки компрессора до 10% без байпасирования горячего газа.
- Гибкая система управления.

Что происходит в случае пропадания питания.

Компрессор чиллера DWME спроектирован так, что в случае пропадания электропитания ток поступает на подшипники и панель управления, в то время как ротор останавливается.

Как это происходит:

В то время как компрессор работает, часть энергии вращения отбирается и накапливается внутри ротора; когда электропитание пропадает, предварительно накопленная энергия поступает на подшипники и панель управления. К тому времени, как накопленная энергия рассеется, ротор компрессора достигнет практически нулевой скорости вращения и ляжет на вспомогательные опоры.

^{*} Технические данные предоставляются по запросу

DWSC/DWDC

Чиллеры с водяным охлаждением конденсатора и центробежным компрессором

DWSC

- Однокомпрессорные агрегаты имеют производительность до 4,5 МВт.
- Двухкомпрессорные агрегаты имеют производительность до 9 МВт.
- Гибкая система управления.
- Подбор чиллера осуществляется индивидуально в зависимости от конфигурации.
- Опционально поставляется регулятор скорости вращения (VFD) для повышения производительности при частичной нагрузке.
- Возможность загрузки компрессора на 5% для двухкомпрессорных агрегатов и на 10% для однокомпрессорных без байпассирования горячего газа.

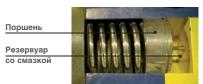
ШИРОКИЙ ВЫБОР ЗНАЧЕНИЙ ПРОИЗВОДИ-ТЕЛЬНОСТИ И ЭНЕРГОЭФФЕКТИВНОСТИ.

Однокомпрессорный агрегат

 DWSC: 300 - 4500 кВт – большое количество возможных комбинаций компонентов чиллера (моторов, турбин, теплообменных аппаратов)

Двухкомпрессорный агрегат

 DWDC: 600 - 9000 кВт – большое количество возможных комбинаций компонентов чиллера (моторов, турбин, теплообменных аппаратов)


Опциональный регулятор скорости вращения (VFD)

- Инверторная технология значительно повысила энергоэффективность при частичной нагрузке
- Уменьшено годовое энергопотребление

Высокая эффективность

- СОР=7 при полной нагрузке
- COP=12 при частичной нагрузке (в сочетании с опцией VFD)

Защита от аварий при потере мощности

Потеря мощности не позволяет чиллерам достигать нормального режима остановки. Недостаточная смазка в данном случае может повредить подшипники и уменьшить продолжительность службы компрессора. Компрессоры оснащаются ёмкостью со смазкой и поршнем с сжимающей пружиной, которые позволяют подводить находящуюся под давлением смазку к подшипникам в период остановки. Также из-за низкой инерции режим останова у компрессоров весьма непродолжительный.

Возможность хранения хладагента

Конденсаторы выполнены так, что позволяют хранить весь объём хладагента чиллера и снабжены клапанами, с помощью которых можно перекрыть весь объём хранящегося хладагента. Данная особенность в большинстве случаев позволяет обходиться без дополнительных ёмкостей для хранения хладагента.

Несогласованное уменьшение нагрузки

Нагрузку можно уменьшить до 10% на однокомпрессорных агрегатах и до 5% на двухкомпрессорных без байпассирования горячего газа. Возможность разгрузки позволяет уменьшить колебания температуры охлаждаемой воды и уменьшить частоту включений компрессоров. Подвижный диффузор на нагнетании увеличивает стабильность работы и уменьшает вибрации.

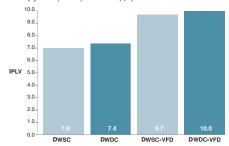
НИЗКИЙ РАБОЧИЙ УРОВЕНЬ ШУМА

Впрыск жидкого хладагента

Небольшое количество жидкого хладагента впрыскивается в область нагнетания компрессора. Капли поглощают энергию звука и уменьшают общий рабочий уро-

вень шума компрессора. Капли испаряются и уменьшают перегрев на нагнетании.

Уменьшение шума при уменьшении нагрузки чиллера


Конструкция такова, что при уменьшенных нагрузках, при которых чиллер работает большую часть времени в году, уровень шума снижается.

СРАВНЕНИЕ ОДНОГО ДВУХКОМПРЕССОР-НОГО АГРЕГАТА DWDC C ДВУМЯ ОДНОКОМ-ПРЕССОРНЫМИ DWSC

- Стоимость одного двухкомпрессорного агрегата ниже двух однокомпрессорных
- Затраты на монтаж одного двухкомпрессорного агрегата ниже двух однокомпрессорных
- Низкие годовые эксплуатационные затраты в обоих случаях
- Меньшее необходимое пространство для монтажа в случае одного двухкомпрессорного агрегата
- Возможность уменьшать производительность до 5% от запроектированной
- Избыточное простаивание оборудования большей части холодильного сезона в случае двух однокомпрессорных агрегатов

Хорошие показатели энергоэффективности при частичной нагрузке

Когда один компрессор работает, есть возможность использовать всю теплопередающую поверхность чиллера в 2 раза более эффективно, чем в случае однокомпрессорного агрегата. Большая поверхность теплообмена позволяет достигать исключительных показателей энергоэффективности. А в случае с дополнительной опцией регулятора скорости вращения (VFD) двухкомпрессорный чиллер способен достигать больших показателей интегрального значения частичной нагрузки (IPLV) по стандартам ARI.

DWSC: 1 компрессор; DWDC: 2 компрессора VFD: Инверторный привод

^{*} Технические данные предоставляются по запросу

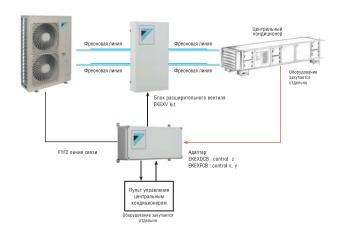
ERAD-E-SS/SL

Компрессорно-конденсаторный блок

пульт MicroTech III

- Новый модельный ряд, включающий модели от 116 до 488 кВт.
- Несколько вариантов моделей.
- Широкий рабочий диапазон температур наружного воздуха: от -18 до +48 °C.
- Одновинтовой компрессор.
- Специальное исполнение компрессора и теплообменных аппаратов для оптимизации работы на озонобезопасном хладагенте R-134a.
- Однокмпрессорные агрегаты.
- Самая маленькая занимаемая площадь в отрасли.
- Простота монтажа, пуско-наладки и удобство обслуживания.
- Для всех моделей возможна опциональная установка решёток защиты конденсатора.
- В стандартную комплектацию не входят элементы для подключения к секции охлаждения центрального кондиционера. Полный комплект поставки запрашивайте у дистрибьютора.

УРОВЕНЬ ШУМА


Энергоэффективность	Стандартный	Низкий, ниже на 3-4 дБ(А) стандартного
Стандартная (ЕЕР до 3.30)	ERAD~E-SS	ERAD~E-SL

ТОЛЬКО ОХЛАЖДЕНИЕ

МОДЕЛЬ СО СТАНДАРТ	ГНЫМ УРОВНЕМ ШУМА	ERAD-E-SS	120	140	170	200	220	250	310	370	440	490	
Холодопроизводительность		кВт	121	144	165	196	219	252	306	370	435	488	
Потребляемая мощность кВт			41.8	51	57.4	65.2	73.7	76.6	92.8	122	147.2	160.8	
Коэффициент EER		2.90	2.83	2.87	3.00	2.97	3.28	3.30	3.04	2.96	3.03		
Уровень звукового давления		дБА	73.5	73.5	73.7	73.7	73.9	75.1	75	75.3	75.3	76	
Компрессор					(Эдновинтовой комг	прессор с плавны	м регулированием	производительно	СТИ			
Количество				1									
Минимальная производительность		%						25					
Хладагент							R-	134a					
Число контуров								1					
Вес агрегата (сухой)		КГ	1564	1587	1698	1739	1886	1928	2355	2559	2642	2677	
Габариты	Длина	MM	2165	2165	3065	3065	3965	3965	3070	3070	3070	3070	
. Ширина мм		MM	1292	1292	1292	1292	1292	1292	2236	2236	2236	2236	
	Высота	MM	2273	2273	2273	2273	2273	2273	2223	2223	2223	2223	
Электролигание Y1 В 3~ 400 В 50 Гш													

МОДЕЛЬ С НИЗКИМ УРОВНЕМ ШУ	MA ERAD-E-S	120	140	160	190	210	240	300	350	410	460	
Холодопроизводительность	кВт	116	137	159	187	209	243	295	352	409	462	
Потребляемая мощность КВт		42.3	52.5	57.6	66.3	73.9	78.2	91.5	122	150	167	
Коэффициент EER	2.74	2.61	2.75	2.82	2.83	3.11	3.23	2.88	2.73	2.76		
Уровень звукового давления	71	71	71.2	71.2	71.4	72.6	72.5	72.8	72.8	73.5		
Компрессор			Одновинтовой компрессор с плавным регулированием производительности									
Количество 1												
Минимальная производительность	%						25					
Хладагент						R-	134a					
Число контуров							1					
Вес агрегата (сухой)	КГ	1712	1738	1851	1897	2046	2091	2534	2741	2834	2873	
Габариты Дл	iha mm	2165	2165	3065	3065	3965	3965	3070	3070	3070	3070	
	рина мм	1292	1292	1292	1292	1292	1292	2236	2236	2236	2236	
Высота мм		2273	2273	2273	2273	2273	2273	2223	2223	2223	2223	
Электропитание Ү1					3~, 400	В, 50 Гц						

Компрессорно-конденсаторный блок

(INVERTER)

ERQ125AW (трехфазные)

R-410A

ERQ200-250AW (трехфазные)

Комплекты Daikin для секции непосредственного охлаждения кондиционеров:

- Компрессорно-конденсаторный блок;
- Блок управления;
- Блок расширительного клапана.
- Комплект представляет собой автоматизированную систему холодоснабжения для центрального кондиционера (любого производителя) с испарителем непосредственного охлаждения/нагрева:
- Высокая энергоэффективность (компрессор Daikin с инверторным управлением);
- Простота монтажа и пуско-наладочных работ;
- Простота управления работой системы;
- Использование высокоэффективного озонобезопасного хладагента R-410A;
- Протяжённые трассы в системе (до 55 м) и перепад высот (до 35 м) обеспечивают гибкость монтажа оборудования на объекте;
- При использовании системы с блоком управления EKEQDCB необходимо дополнительно заказать пульт управления BRC1D52, адаптер KRP4A51 (KRP4A53), температурный датчик KRCS01-1.

Блок управления

ОХЛАЖДЕНИЕ / НАГРЕВ

НАРУЖНЫЙ БЛОК		•		ERQ100AV	ERQ125AV	ERQ140AV	ERQ125AW	ERQ200AW	ERQ250AW	
Холодопроизводительность		Номинальная	кВт	11.20	14.00	15.50	14.0	22.4	28.0	
Теплопроизводительность		Номинальная	кВт	12.50	16.00	18.00	16.0	25.00	31.50	
Потребляемая мощность (охлаж	дение)	Номинальная	кВт	2.80	3.50	4.53	3.52	5.22	7.42	
Потребляемая мощность (нагре			кВт	2.74	3.87	4.56	4.00	5.56	7.70	
Энергоэффективность	ергоэффективность Охлаждение ЕЕЯ			3.99	3.99	3.42	3.98	4.29	3.77	
	Нагрев	COP		4.56	4.13	3.94	4.00	4.50	4.09	
Расход воздуха	Охлаждение	Номинальная	м³/мин	106	106	106	95	171	185	
асход воздуха С Н СОВЕНЬ ЗВУКОВОГО ДАВЛЕНИЯ С	Нагрев	Номинальная	м³/мин	102	105	105	95	171	185	
Уровень звукового давления	Охлаждение	Макс. / мин.	дБА	50	51	53	53	57	58	
Трубопровод хладагента	Макс. длина / п	перепад высот м		50+5/30+5	50+5/30+5	50+5/30+5	50+5/30+5	50+5/30+5	50+5/30+5	
	Диаметр труб	Жидкость / газ	MM	9.52/15.9 9.52/15.9		9.52/19.1	9.52/15.9	9.52/19.1	9.52/22.2	
Габариты		(ВхШхГ)	MM	1345x	900x320	1345x900x320	1680x635x765	1680x	930x765	
Bec			КГ	1	125	125	159	187	240	
Диапазон			°С, сух. терм.		-5~+46			-5~+43;		
рабочих температур	температур Нагрев от ~ до °C, вл. т		°С, вл. терм.		-20~+15,5;		-20~+15;			
Хладагент	падагент					R-	-410A			
Электропитание (VM)			В		1~. 220~240B. 50 Fu			3N~. 400 B. 50 F⊔		

Дополнительное оборудование

дополнительное осорудование			
БЛОК УПРАВЛЕНИЯ			EKEQDCB / EKEQFCB
Диапазон рабочих температур °C			-10~40
Габариты, размеры	(ВхШхГ)	М	132×400×200
Poo ve			20

КОМПЛЕКТ РАСШИРИТЕЛЬНО	ГО ВЕНТИЛЯ		EKEXV63	EKEXV80	EKEXV100	EKEXV125	EKEXV140	EKEXV200	EKEXV250	
Диаметр жидкостного трубопровода		MM	9.52							
Габариты, размеры	М	401x215x78								
Bec	КГ	29								
Уровень звукового давления на расстоянии 10 см		дБА	45							
Диапазон рабочих температур		℃	-5~46							
Объём испарителя	CM ³	1.66~2.08	2.09~2.64	2.65~3.3	3.31~4.12	4.13~4,62	4.63~6.6	6.61~8.25		
Холодопроизводительность теплообменника	6.3~7.8	7.9~9.9	10~12.3	12.4~15.4	15.5~17.6	17.7~24.6	24.7~30.8			

Температура киления на всасывании (SST) = 6 °C, SH (перегрев)= 5 К, температура воздуха = 27 °C DB / 19 °C WB, где DB − сухой термометр, WB − влажный термометр

D-AHU Professional

Центральные кондиционеры

Модельный ряд

Модельный ряд включает 27 типоразмеров, что позволяет точно и оптимально подобрать установку требуемого расхода воздуха, не переплачивая. Стандартный диапазон выпускаемых моделей включает оборудование с производительностью от 1100 до 124000 м³/час.

При подборе установки есть возможность подобрать не только необходимую скорость воздушного потока, но и выбрать требуемое сечение (ширина х высота) для размещения установки в ограниченном пространстве. Модульность конструкций определяет удобство транспортировки и сборки. Блоки АНU собираются без применения сварки и по желанию заказчика могут поставляться в разобранном виде.

Компоненты

Фильтры

- Синтетический гофрированный фильтр.
- Плоские фильтры в алюминиевой или стальной сетке.
- Компактные мешочные фильтры.
- Мягкие мешочные фильтры.
- Высокоэффективные фильтры.
- Абсорбционные фильтры.
- Дезодорирующие фильтры с активированным углем.

Теплообменники

- Водяные теплообменники.
- Паровые теплообменники.
- Теплообменники прямого испарения.
- \bullet Теплообменники перегретой воды до 150 °C.
- Электрические нагреватели.

Увлажнители

- Увлажнители поверхностного испарения без насоса.
- Увлажнители поверхностного испарения с рециркуляционным насосом.
- Увлажнители с разбрызгиванием воды без насоса.
- Увлажнители с разбрызгиванием воды с рециркуляционным насосом.

- Паровые увлажнители с локальными парораспределительными трубками.
- Паровые увлажнители с внешним электродным парогенератором.
- Увлажнители с распылением воды.

Вентиляторы

- Вентиляторы с загнутыми вперед лопатками.
- Вентиляторы с загнутыми назад лопатками.
- Прямоточные вентиляторы.

Системы с рекуперацией теплоты

- С вращающимся роторным теплообменником.
- С пластинчатым теплообменником.
- С промежуточным теплоносителем.

Другие элементы

- Забор, выброс воздуха
- задвижки с сервоприводом;
- ручные задвижки.
- Пустые секции.
- Секция газовых горелок.
- Секция шумоглушителей.

D-AHU Professional

Центральные кондиционеры

Технические возможности

Все установки разрабатываются с учётом увеличения энергоэффективности. Теплофизические свойства поверхностей теплообмена, коэффициент полезного действия электродвигателя, степень фильтрации, теплоизоляция, уменьшение трения и перепадов давления воздушного потока в АНО являются наиболее важными составляющими, которые учитываются при разработке оборудования.

В основе конструкции лежит несущая рама и профили из алюминия или анодированного алюминия (рекомендуются для установок в особо агрессивных средах) сечением 40х40 или 60х60 мм. Есть модификации профилей: с термоизолирующей вставкой (сечением 60х60 мм) или с овальной внутренней поверхностью (рекомендуются для применения в пищевой отрасли, медицине, других областях с особыми требованиями к гигиене). Все профили имеют двухполостную структуру, крепящие винты полностью скрыты и не выступают из конструкции АНU (в соответствии с требованиями по предотвращению несчастных случаев). Кроме того, профили имеют уплотнение типа «ласточкин хвост» для обеспечения максимальной герметичности. Рама изготавливается из экструдированного алюминия с литыми алюминиевыми уголками и имеет специальные отверстия для подъемных крюков.

Все панели состоят из двух стенок и теплоизоляции между ними и могут быть плоскими (толщиной 25 и 46 мм) или ступенчатыми (толщиной 42 и 62 мм). Ступенчатые панели позволяют получить плоскую поверхность внутри изделия и обеспечить непрерывность между панелью и профилем. Изоляция может быть в виде вспененного полиуретана (40 – 50 кг/м³) или волокнистой минеральной ваты (90 кг/м³), приклеенной к панели.

Элементы крепежа, саморезы из нержавеющей стали, помещены в нейлоновые втулки и закрыты внешними колпачками. Это позволяет полностью скрыть винты, а благодаря применению самоцентрирующихся винтов обеспечивается плотность затяжки.

Для удобства проведения технического обслуживания и осмотра секций можно сделать двери с открытием наружу или вовнутрь, влево или вправо.

По желанию заказчика ручки на дверях можно сделать с регулируемым зажимом, это обеспечит герметизацию на длительное время. Чтобы исключить несанкционируемый доступ, на двери могут быть установлены замки. Для предотвращения износа нейлоновой защелки при многократном закрывании двери используется антифрикционная прокладка.

Смотровые окна выполнены из ударопрочного поликарбоната, используются уплотнительные прокладки. В зависимости от требований по очистке воздуха центральные кондиционеры комплектуются фильтрами различной эффективности. Все фильтры смонтированы на серийно выпускаемых рамах с уплотнителями. Фильтры извлекаются с загрязненной стороны, это не допускает загрязнения воздушного канала при выполнении технического обслуживания. Установки могут комплектоваться разными типами и моделями увлажнителей. Имеются варианты с полностью съёмными устройствами увлажнения или съёмной секцией увлажнителя поверхностного испарения.

Натяжное устройство «мотор-вентилятор» выполнено как единая конструкция, состоящая из двух алюминиевых профилей с амортизаторами и электродвигателя, установленного на салазках. Устройство размещается не на дне установки, а на специальных алюминиевых профилях. При таком монтаже вибрация не передается на пол помещения.

Алюминиевый профиль с термовставкой для уменьшения энергопотерь

Уголок

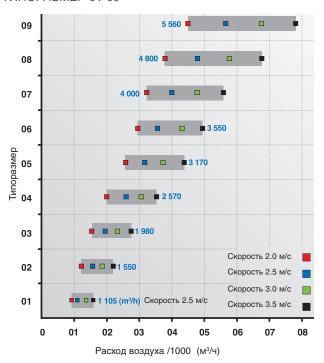
Рама

Запирающаяся ручка

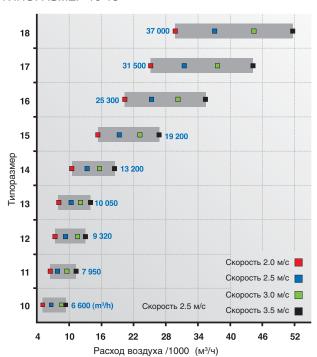
Антифрикционная накладка

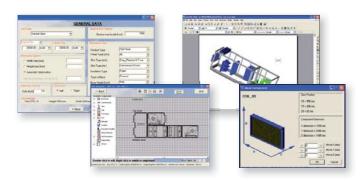
Минеральная вата

Ступенчатая панель

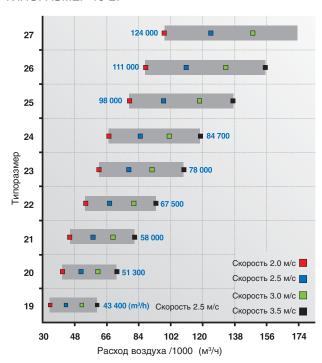

D-AHU Professional

Центральные кондиционеры


Программное обеспечение


Программа подбора оборудования — мощный программный пакет, который позволяет сделать потребителю правильный технический выбор и оценить любой вариант АНU с точки зрения экономии. Программа позволяет моделировать любые конфигурации с точным учетом потребностей. Результатом является исчерпывающее предложение с экономическим обоснованием, включающее все технические данные, чертежи, диаграммы.

ТИПОРАЗМЕР 01-09



ТИПОРАЗМЕР 10-18

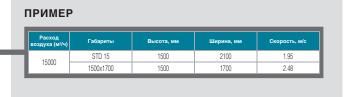
ТИПОРАЗМЕР 19-27

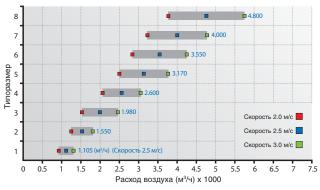
СТАНДАРТНЫЕ ТИПОРАЗМЕРЫ

Типо- размеры	Расход воздуха (м³/час) Скорость 2,5 м/сек	Ширина, мм	Высота, мм
1	1105	850	550
2	1550	900	600
3	1980	950	650
4	2570	100	780
5	3170	1150	780
6	3550	1150	800
7	4000	1250	800
8	4800	1300	800
9	5560	1350	900
10	6600	1550	900
11	7950	1550	1100
12	9320	1650	1100
13	10050	1650	1150
14	13200	1850	1400
15	19200	2100	1500
16	25300	2650	1500
17	31500	2750	1750
18	37000	3220	1800
19	43400	3090	2100
20	51300	3340	2250
21	58000	3820	2250
22	67500	4040	2400
23	78000	4490	2450
24	84700	4490	2700
25	98000	4890	2850
26	111000	5490	2850
27	124000	5990	3000

D-AHU Easy

Центральные кондиционеры


Модельный ряд AHU-Easy состоит из оборудования с диапазоном производительностей по воздуху от 500 до 30000 м³/час, с возможностью выбора оптимальной скорости воздушного потока в зависимости от заданных условий. Daikin использует 15 стандартных типоразмеров, рассчитанных для оптимального соответствия результатов требованиям клиентов. Центральные кондиционеры AHU-Easy позволяют решать задачи


по размещению оборудования в условиях ограниченного пространства. Для этого существует возможность получить установку нестандартного размера путем изменения высоты и ширины с шагом 5 см (технология Variable Dimensioning TM). Модульность конструкций определяет удобство транспортировки и сборки. Блоки AHU собираются без применения сварки и по желанию заказчика могут поставляться в разобранном виде.

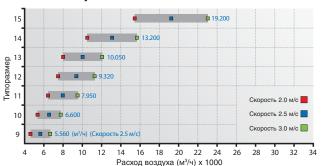
ШИРОКИЙ ВЫБОР РАЗМЕРОВ

Типо размеры	Расход воздуха (м³/ч) Скорость 2.5 м/с	Высота, мм	Ширина, мм
Std 1	1105	550	850
Std 2	1550	600	900
Std 3	1980	650	950
Std 4	2600	780	1100
Std 5	3170	780	1150
Std 6	3550	800	1150
Std 7	4000	800	1250
Std 8	4800	850	1300
Std 9	5560	900	1350
Std 10	6600	900	1550
Std 11	7950	1100	1550
Std 12	9320	1100	1650
Std 13	10050	1150	1650
Std 14	13200	1400	1850
Std 15	19200	1500	2100

D-AHU Easy 1-8

ПАНЕЛИ

В установках AHU-Easy используются панели, изготовленные методом горячего заполнения полиуретановой пеной. Это позволяет достичь превосходных теплоизоляционных свойств.


ОПТИМАЛЬНАЯ СКОРОСТЬ ВОЗДУХА

При расчете установки размеры секций определяются автоматически. Это обеспечивает оптимальную скорость воздуха в охладителе и позволяет оптимизировать стоимость оборудования.

СПЕЦИАЛЬНЫЕ УПЛОТНИТЕЛЬНЫЕ ПРОКЛАДКИ

Применение специальных уплотнительных прокладок в профилях установок снижает вероятность возникновения "тепловых мостов".

D-AHU Easy 9-15

конструкция

Уникальный метод крепления панелей и профилей обеспечивает равномерное распределение давления воздуха по всему объему установки и позволяет значительно сократить утечки воздуха.

ВНУТРЕННЯЯ ПОВЕРХНОСТЬ

Внутренняя поверхность установок AHU-Easy полностью гладкая.

КОНКУРЕНТНОСПОСОБНОСТЬ

При проектировании установок мы применяем технологию Variable Dimensioning TM , благодаря которой наши клиенты всегда уверены, что оборудование соответствует именно их требованиям и пожеланиям.

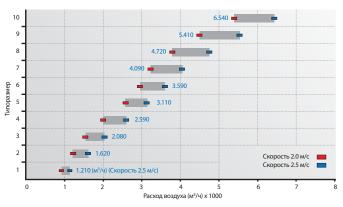
D-AHU Energy Центральные кондиционеры

Компания Daikin занимает лидирующие позиции в области энергоэффективности и специально для поддержания данной концепции в приточных установках разработана серия D-AHU Energy.

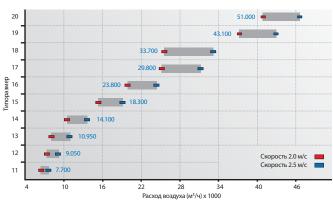
По сравнению со стандартными приточными установками, серия оптимизирует годовое потребление электроэнергии и призвана свести к минимуму эксплуатационные расходы.

ШИРОКИЙ ВЫБОР РАЗМЕРОВ

Типо размеры	Расход воздуха (м³/ч) Скорость 2.5 м/с	Высота, мм	Ширина, мм
1	1210	580	720
2	1620	610	770
3	2080	680	820
4	2590	750	870
5	3110	750	990
6	3590	750	1100
7	4090	800	1110
8	4720	810	1240
9	5410	870	1270
10	6540	970	1370
11	7700	1050	1370
12	9050	1110	1470
13	10950	1180	1620
14	14100	1360	1720
15	18300	1480	1970
16	23800	1610	2270
17	29800	1740	2570
18	33700	1900	2710
19	43100	2090	3060
20	51000	2220	3360



НЕОГРАНИЧЕННОЕ КОЛИЧЕСТВО ТИПОРАЗМЕРОВ


Гибкая система размеров для оптимизации AHU

- Шаг прироста ширины и глубины 1 см
- Подбор оборудования с индивидуальными характеристиками без дополнительных затрат
- Не требуется дополнительное время на выполнение заказа

D-AHU ENERGY 1-10

D-AHU ENERGY 11-20

конструкция

Оценивая полную стоимость жизненного цикла приточной установки, можно выделить следующие источники расходов:

- Первоначальные затраты на этапе покупки и установки оборудования
- Затраты на периодическое техническое обслуживание
- Затраты на электроэнергию.

В процентном соотношении, затраты на электроэнергию составляют, в среднем, 70-80% от суммарных в течение всего срока эксплуатации. Серия Energy позволяет свести эти затраты к минимуму, благодаря увеличенной механической производительности (в соответствии с EN 1886) и снижению потерь энергии через корпус и элементы конструкции. Серия сертифицирована по программе EUROVENT.

ВЫСОКАЯ ЭФФЕКТИВНОСТЬ ОТДЕЛЬНЫХ КОМПОНЕНТОВ

Высокоэффективная рекуперация

Серия D-AHU Energy оборудована высокоэффективным роторным рекуператором, восстанавливающим от 65% тепла вытяжного воздуха (КПД регенерации может достигать до 90%). Заказчику предлагается на выбор несколько вариантов секции рекуперации. В частности, рекуператор может быть оснащен:

- Конденсаторным рабочим колесом
- Энтальпийным рабочим колесом
- Сорбционным рабочим колесом

Сверхэффективный электродвигатель

Для серии Energy доступны для заказа сверхэффективные двигатели, отвечающие требованиям EU REG 640_2009, позволяющим дополнительно снизить потребление электроэнергии.

Высокоэффективный вентилятор

Высокоэффективные вентиляторы двойное всасывание и загнутыми назад лопатками, эффективностью до 85%. Используются подшипники усиленной конструкции для увеличения срока службы.

Управление

Системы управления Daikin позволяют эффективно управлять всеми компонентами индивидуально, либо через внешнюю систему контроля. Комплект управления включает в себя панель управления, современный микропроцессор, датчики температуры, влажности, качества воздуха, и другие функции.

Быстрая окупаемость

Установка приточных установок (АНU) зачастую является необходимым решением для создания систем эффективного управления климатом. Несмотря на то, что первоначальные вложения у серии Епегду выше, современная конструкция и эффективная работа системы обеспечивает значительную экономию средств на эксплуатацию, что в свою очередь гарантирует быстрый срок окупаемости оборудования.

Учитывая продолжительный срок эксплуатации систем AHU (около 15 лет), снижение затрат будет значительно, особенно в условиях постоянного роста тарифов на электроэнергию.

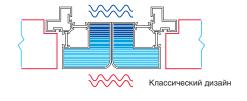
Конструкция

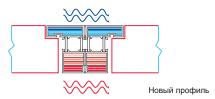
Основываясь на многолетнем опыте и обширных исследованиях, компания Daikin разработала уникальную теплоизоляционную конструкцию профиля, отличающуюся от используемых в настоящее время, и обеспечивающую постоянные тепловые характеристики.

Инновационный профиль состоит из двух специальных полиамидных планок, которые предотвращают теплопередачу от внутренней части профиля к наружной, таким образом, исключаются тепловые потери от установки во внешнюю среду.

Уникальной частью этого решения является то, что толщина планок составляет 20 мм вместо 16 мм, которые широко доступны на внутреннем рынке.

Кроме того, снижение тепловых потерь в профиле позволяет избежать нежелательного конденсата на внешней стороне устройства. Новая конструкция профиля повышает эффективность системы без существенного повышения стоимости.

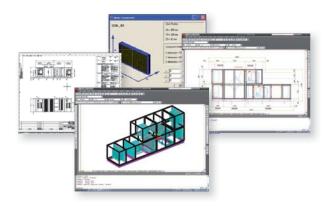


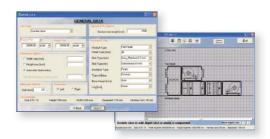

Соединения профилей

Наряду с инновационной теплоизоляционной конструкцией, компания Daikin разработала новую концепцию соединения профилей для снижения значительных тепловых потерь в местах объединения двух секций.

Системы АНU, как правило, поставляются отдельными секциями и соединяются между собой на месте установки. Классическая сборка секций, использует угловой профиль, при котором имеет место потеря энергии.

В новом профиле Daikin, создается разрыв между внутренней и внешней стенками АНU, тем самым гарантируя теплоизоляцию во всей установке и снижение тепловых потерь.





ПРОГРАММНОЕ ОБЕСПЕЧЕНИЕ

ASTRA это мощный программный пакет, разработанный Daikin, предоставляющий заказчикам полный спектр услуг для быстрого подбора приточных установок.

Программа может сконфигурировать любой тип продукта и точно отвечать заданным условиям. ASTRA выводит всеобъемлющее экономическое предложение, включая все технические данные и чертежи, психометрические диаграммы с относительной обработкой воздуха и кривые производительности вентиляторов.

МЕССАNO программный инструмент, позволяющий быстро и удобно конвертировать данные для оформления заказа, в частности, подготовка технических чертежей для отправки заказчику на утверждение, рабочие чертежи для завода, список материалов, генерация кодов для каждого используемого компонента, и другие функции.

Интеграция ASTRA-MECCANO обеспечивает автоматизацию управления процессом подбора и производства оборудования, позволяя в минимальные сроки выполнить заказ.

FWB-BT

Средненапорный канальный блок

FWEC1A

FWB02BT

- 7 ступеней регулирования скорости вращения вентилятора (можно выбрать только 3).
- Компактные размеры блока позволяют легко установить его в узком пространстве между подвесным потолком и перекрытием (высота блока: 240 мм).
- Широкий выбор дополнительного оборудования.
- Воздушный фильтр входит в стандартную поставку; легко снимается и чистится.
- Широкие возможности управления.
- Электронный проводной пульт управления FWEC1A.
- Встроенный трёхходовой клапан (для модели серии *-BTV).

B B

комплект трехходового клапана с приводом (заводской монтаж)

Примечание:

- 1. Для 4-трубных фанкойлов используется дополнительный теплообменник, а также возможна заводская комплектация 2-ходовым и 3-ходовым клапаном.
- 2. Модели FWB-BTN поставляются под заказ.
- 3. Для моделей FWB08BT, FWB09BT, FWB10BT при заказе пульта обязателен заказ интерфейса питания EPIB6.
- 4. Возможность управления с одного пульта до 4 фанкойлов.

FWB02-1	I0BT*			02	03	04	05	06	07	08	09	10
0	Полная холодопроизводи	ительность, выс.	кВт	2.61	3.14	3.49	5.08	5.45	6.47	7.57	8.67	10.34
Охлаждение	Явная холодопроизводит	ельность, выс.	кВт	1.88	2.16	2.34	3.60	3.87	4.40	5.23	5.96	6.90
Теплопроизволительность (2-тоубный) вы		ть (2-трубный) выс.	кВт	5.47	6.01	6.47	10.31	11.39	12.28	15.05	16.85	18.78
Нагрев Теплопроизводительность (4-трубный) выс.			кВт	3.14	3.14	3.14	5.99	5.99	5.99	12.8	12.8	12.8
Потребляемая мощность, выс.			Вт	79	79	79	154	154	154	294	294	294
Габариты (ВхШхГ)			MM	239x1039x609				239x1389x609			239x1739x609	
Bec			КГ	23	24	26	31	33	35	43	45	48
Уровень звуковой мощн	ости	выс. / низ.	дБА	56 / 35	56 / 35	56 / 35	59 / 37	59 / 37	59 / 37	69 / 53	69 / 53	69 / 53
Теплообменник		число рядов		3	4	6	3	4	6	3	4	6
Расход воздуха		выс.	м3/час		400			800			1200	
Свободный напор			Па		71			65			59	
Число скоростей			7 скоростей (высокая = 7, средняя = 4, низкая = 1)									
Размер труб по воде							3/4"					
Электропитание		В					1~, 230 В, 50 Гц					

FWE-CT/CF

Средненапорный канальный блок

FWEC1A

FWE02CT

- Небольшое потребление электроэнергии.
- Низкий уровень шума.
- 4 скорости вращения вентилятора.
- Широкий дренажный поддон в стандартной комплектации.
- Большой выбор дополнительного оборудования.
- Широкие возможности управления.
- Возможность подвода водяных патрубков, как с правой, так и левой сторон.
- Двухтрубные и четырехтрубные модели.
- Двухходовые клапаны (опция).
 - EK2MV2B10C5 2-трубные фанкойлы;
 - EK4MV2B10C5 4-трубные фанкойлы.
- Трехходовые клапаны (опция).
- EK2MV3B10C5 2-трубные фанкойлы;
- EK4MV3B10C5 4-трубные фанкойлы.

F۱	۷E	02-10C*			02	03	04	06	07	08	10
	Ψ	Полная холодопроизводительность (в	ыс.)	кВт	1.81	2.78	3.49	5.32	5.68	6.92	8.64
	톫	Явная холодопроизводительность (вы	c.)	кВт	1.33	2.08	2.58	3.94	4.30	5.25	6.48
_	охлаждение	Расход воды		л/час	360	540	756	1044	1188	1368	1728
<u></u>	8	Гидросопротивление		кПа	15.1	11.7	23.9	46.4	14.8	19.3	32.9
2-трубный (*=Т)	m	Теплопроизводительность (выс.)		кВт	2.31	3.67	4.44	6.65	7.62	9.18	11.10
ρĘ	AFPEB	Расход воды		л/час	252	360	504	684	828	936	1188
6	Ŧ	Гидросопротивление		кПа	6.1	4.9	9.7	17.9	6.6	8.4	13.7
	Расход	воздуха	высокий	m³/час	311	518	619	926	1188	1413	1735
	Bec			КГ	17	20	24	28	37	39	46
	뿐	Полная холодопроизводительность (в	ыс.)	кВт	1.76	2.69	3.22	5.20	5.61	6.79	8.61
	охлаждение	Явная холодопроизводительность (вы	c.)	кВт	1.28	1.99	2.53	3.81	4.20	5.09	6.39
Œ	¥	Расход воды		л / час	360	540	720	1044	1188	1332	1728
4-трубный (*=F)	õ	Гидросопротивление	кПа	14.5	11.4	21.6	46.3	14.6	19.1	32.7	
<u>`</u>	æ	Теплопроизводительность		кВт	1.94	3.06	3.76	5.37	6.42	7.52	9.16
ďρ	HAFPEB	Расход воды		л/час	108	180	216	324	432	468	576
4	Ŧ	Гидросопротивление		кПа	3.6	8.8	15.6	31.8	58.6	74.6	123
	Расход	воздуха	высокий	m³/час	302	501	571	905	1173	1387	1729
	Bec			КГ	18	22	25	30	40	41	49
	Потреб	ляемая мощность		Вт	39	54	59	93	128	145	180
(H)	Объем	воды в теплообменнике		л	0.74	1.02	1.24	1.56	1.97	2.14	2.56
4-трубный	Размер	труб по воде			3/4"	3/4"	3/4"	3/4"	3/4"	3/4"	3/4"
Й. 4	Максил	иальный потребляемый ток	A	0.17	0.24	0.27	0.43	0.58	0.65	0.78	
용	Габари	ты (ВхШхГ)	MM	253x590x705	253x590x875	253x590x1005	253x590x1205	253x590x1455	253x590x1565	253x590x1815	
2-трубный /	Уровен	ь звуковой мощности	в окружении	дБА	49	56	48	55	57	58	60
7	Электр	ектропитание В-Гц						1~, 220-240 В, 50 Гц			

^{**} СF – четырехтрубный.

СТ – двухтрубный.

FWD-AT/AF

Высоконапорный канальный блок

FWEC1A

FWD04A

- Воздушный фильтр в стандартной поставке.
- Двух- и четырехтрубные модели.
- Трехходовой клапан для двухтрубных моделей:
 - модель 04: ED2MV04A6;
- модели 06-10: ED2MV10A6;
- модель 12: ED2MV12A6;
- модели 16-18: ED2MV18A6.
- Трехходовой клапан для четырехтрубных моделей:
- модель 04: ED4MV04A6;
- модели 06-10: ED4MV10A6;
- модель 12: 2xED2MV12A6;
- модели 16-18: 2xED2MV18A6.
- Дренажный поддон:
 - горизонтальный:

модели 04-10: EDDPH10A6 (идет в комплекте с клапаном);

модели 12-18: EDDPH18A6.

- вертикальный:

модели 04-10: EDDPV10A6;

модели 12-18: EDDPV18A6.

• Электронный пульт управления: FWEC1A (обязателен заказ модуля питания EPIB к пульту).

Примечание:

Модели FWD-AF поставляются под заказ.

F۷	۷D	04-18A*			04	06	08	10	12	16	18
	W W	Полная холодопроизводительность (вь	ic.)	кВт	3.90	6.20	7.80	8.82	11.90	16.4	18.3
	富	Явная холодопроизводительность (выс	2.)	кВт	3.08	4.65	6.52	7.16	9.36	12.8	14.1
_	охлаждение	Расход воды (выс.)		л / час	674	1064	1339	1514	2056	2833	3140
<u>.</u> "	8	Гидросопротивление (выс.)		кПа	17	24	24	16	26	34	45
2-трубный (*=T)	m	Теплопроизводительность (выс.)		кВт	4.05	7.71	9.43	10.79	14.45	19.81	21.92
ξ	HAFPEB	Расход воды (выс.)		л / час	674	1064	1339	1514	2056	2833	3140
2	¥	Гидросопротивление (выс.)		кПа	14	20	20	13	21	28	37
	Максил	иальный свободный напор		Па	66	58	68	64	97	145	134
	Bec			КГ	33	41	47	49	65	77	80
	H	Полная холодопроизводительность (вь	ic.)	кВт	3.90	6.20	7.80	8.82	11.90	16.4	18.3
	표	Явная холодопроизводительность (выс.)		кВт	3.08	4.65	6.52	7.16	9.36	12.8	14.1
	охлаждение	Расход воды (выс.)		л / час	674	1064	1339	1514	2056	2833	3140
4-трубный (*=F)	8	Гидросопротивление (выс.)		кПа	17	24	24	16	26	34	45
(<u>इ</u>	en.	Теплопроизводительность		кВт	4.49	6.62	9.21	9.21	15.86	21.15	21.15
ξĒ	HAIPEB	Расход воды (выс.)		л / час	349	581	808	808	1392	1856	1856
4	ž	Гидросопротивление (выс.)		кПа	9	15	13	13	12	16	16
	Максил	иальный свободный напор		Па	63	53	63	59	92	138	128
	Bec			КГ	35	43	50	52	71	83	86
.=	Расход	воздуха		м³/час	800	1250	1600	1600	2200	3000	3000
(F)	Потреб	ляемая мощность		Вт	177	274	315	325	530	991	1001
4-трубный	Размер труб по воде			3/4"	3/4"	3/4"	3/4"	1"	1"	1"	
			A	0.95	1.58	1.97	1.97	3.21	5.37	5.37	
2-трубный /	Габариты (ВхШхГ)		MM	280x754x559	280x964x559	280x1	174x559	352x1174x718	352x1	384x718	
ξ	Уровень звуковой мощности в окружении		дБА	66	69	72	72	74	78	78	
7	Электропитание			В-Гц				1~, 230 В, 50 Гц			

Номинальная холодопроизводительность указана для следующих условий: температура воздуха в помещении – 27 °C по сухому термометру, 19 °C по влажному термометру; температура воды – 7 °C / 12 °C.

Номинальная теплопроизводительность указана для следующих условий: температура воды на входе – 50 °C, расход воды – как в режиме охлаждения; для четырехтрубных фанкойлов температура воды – 70 °C / 60 °C. Уровень звуковой мощности - в соответствии со стандартом ISO 3711.

Уровень звукового давления измерен на расстоянии 1,5 м - Q=2.

комплект трехходового клапана с приводом

FWM-DT/DF

Напольно-подпотолочный блок (без корпуса)

FWEC1A

ECFWMB6 электромеханический пульт управления

FWM01D

- Изолированный трехходовой клапан: не требует специального дренажного поддона.
- Электронагреватель оснащён 2 термостатами.
- Широкие возможности управления.
- Возможность поставки с трехходовым клапаном, установленным на заводе.
- Простота установки электрических опций: не требуется дополнительных устройств.
- Трехходовой клапан для двухтрубных моделей:
- модель 01-03: E2MV03A6;
- модель 04-06: E2MV06A6;
- модель 08-10: E2MV10A6.
- Трехходовой клапан для четырехтрубных моделей:
- модель 01-03: E4MV03A6;
- модель 04-06: E4MV06A6;
- модель 08-10: E4MV10A6.
- Электромеханический пульт: ECFWMB6.
- Электронный пульт: FWEC1A.
- Дренажный поддон вертикальный: EDPVA6.
- Дренажный поддон горизонтальный: EDPHA6.

комплект трехходового клапана с приводом

Примечание:

Модели FWM-DTV, FWM-DFN и FWM-DFV поставляются под заказ.

F١	ΝM	01-10D**		01	02	25	03	35	04	06	08	10	
	Ψ	Полная холодопроизводительность (в	ыс.)	кВт	1.54	1.96	2.42	2.93	3.51	4.33	4.77	6.71	8.02
	охлаждение	Явная холодопроизводительность (вы	c.)	кВт	1.20	1.42	1.88	2.11	2.72	3.15	3.65	4.91	5.96
	¥.	Расход воды		л/час	264	337	415	504	602	743	818	1152	1376
2	8	Гидросопротивление		кПа	13	12	16	11	12	12	14	12	19
(**=ТN или ТV)	m	Теплопроизводительность (выс.)		кВт	2.14	2.57	3.20	3.81	4.78	5.10	5.95	7.83	10.03
Ę	ALPEB	Расход воды		л/час	264	337	415	504	602	743	818	1152	1376
Ĭ.	Ŧ	Гидросопротивление		кПа	11	10	13	9	10	10	12	10	16
2-трубный	Потреб	бляемая мощность		Вт	37	53	57	56	98	98	98	182	244
-2 -[⊒	Объем	ы воды в теплообменнике		Л	0.5	0.7	0.7	1.0	1.0	1.4	1.4	2.1	2.1
	Расход	, воздуха	ВЫСОКИЙ	м³/час	319	344	442	442	640	706	785	1011	1393
	Уровен	ь звуковой мощности	ВЫСОКИЙ	дБА	47	50	48	48	52	53	56	61	67
_	Bec			КГ	14	15	19	19	23	23	23	32	32
	뿔	Полная холодопроизводительность (в	лодопроизводительность (выс.)		1.46	1.79	2.38	2.87	3.46	4.26	4.67	6.64	7.88
	охлаждение	Явная холодопроизводительность (вы	c.)	кВт	1.14	1.46	1.85	2.07	2.71	3.09	3.57	4.85	5.85
	ĕ	Расход воды		л / час	251	327	494	494	745	745	803	1142	1355
<u>ج</u>	ŏ	Гидросопротивление		кПа	12	13	16	11	12	12	14	12	16
Ē		Объем воды в теплообменнике		Л	0.5	0.7	0.7	1.0	1.0	1.4	1.4	2.1	2.1
Ę	8	Теплопроизводительность		кВт	1.90	2.01	2.92	3.08	4.80	5.05	5.30	7.91	8.35
<u>"</u>	HALPEB	Расход воды		л / час	196	182	286	286	396	396	465	694	816
(<u>F</u>	<u> </u>	Гидросопротивление		кПа	6	7	4	5	9	12	10	30	30
4-трубный (**=FN или FV)		Объем воды в теплообменнике		Л	0.2	0.2	0.3	0.3	0.4	0.4	0.4	0.6	0.6
4	Потреб	бляемая мощность		Вт	37	53	57	56	98	98	98	182	244
	Расход	Расход воздуха высокий		м³/час	307	327	432	431	628	690	763	998	1362
	Уровень звуковой мощности высокий		дБА	45	50	48	47	51	56	59	60	66	
_	Bec			КГ	15	16	20	20	25	25	25	34	34
Œ.	Размер труб по воде			1/2"	1/2"	1/2"	1/2"	1/2*	1/2"	1/2"	3/4"	3/4"	
2-тубный / 4-трубный	Максимальный потребляемый ток А		A	0.17	0.24	0.26	0.25	0.44	0.44	0.43	0.82	1.10	
Ž.		ты (ВхШхГ)		MM	535x5	84x224	535x7	94x224		535x1004x224		535x1	214x249
2-10	Электропитание В-Гц			В-Гц	1~, 230 В, 50 Гц								

^{**} TN – двухтрубный, без трехходового клапана.

TV – двухтрубный, с трехходовым клапаном.

FN – четырехтрубный, без трехходовых клапанов. FV – четырехтрубный, с трехходовых клапаном.

FWV-DT/DF

Напольный блок

пульт управления

ЕСFWMB6 электромеханический F

FWEC1A

FWV02D

- Изолированный трехходовой клапан: не требует специального дренажного поддона.
- Электронагреватель оснащен 2 термостатами.
- Возможность поставки с трехходовым клапаном, установленным на заводе.
- Простота установки электрических опций: не требует дополнительных устройств.
- Трехходовой клапан для двухтрубных моделей:
- модель 01-03: E2MV03A6;
- модель 04-06: E2MV06A6;
- модель 08-10: E2MV10A6.
- Трехходовой клапан для четырехтрубных моделей:
- модель 01-03: E4MV03A6;
- модель 04-06: E4MV06A6;
- модель 08-10: E4MV10A6.
- Электромеханический пульт: ECFWMB6.
- Электронный пульт: FWEC1A.
- Дренажный поддон вертикальный: EDPVA6.

комплект трехходового клапана с приводом

Примечание:

Модели FWV-DTV, FWV-DFN и FWV-DFV поставляются под заказ.

F١	NV(01-10D **		01	02	25	03	35	04	06	08	10	
	ų.	Полная холодопроизводительность (в	ыс.)	кВт	1.54	1.96	2.42	2.93	3.51	4.33	4.77	6.71	8.02
	охлаждение	Явная холодопроизводительность (вы	c.)	кВт	1.20	1.42	1.88	2.11	2.72	3.15	3.65	4.91	5.96
	¥ X	Расход воды		л/час	264	337	415	504	602	743	818	1.152	1376
2	8	Гидросопротивление		кПа	13	12	16	11	12	12	14	12	19
2-трубный (**=TN или TV)	gg.	Теплопроизводительность (выс.)		кВт	2.14	2.57	3.20	3.81	4.78	5.10	5.95	7.83	10.03
Ę	HAΓPEB	Расход воды		л/час	264	337	415	504	602	743	818	1.152	1376
Š	Ŧ	Гидросопротивление		кПа	11	10	13	9	10	10	12	10	16
훓	Потреб	ляемая мощность		Вт	37	53	57	56	98	98	98	182	244
2- <u>1</u>	Объемь	ы воды в теплообменнике		Л	0.5	0.7	0.7	1.0	1.0	1.4	1.4	2.1	2.1
	Расход	воздуха	высокий	м³/час	319	344	442	442	640	706	785	1011	1393
	Уровен	ь звуковой мощности	высокий	дБА	47	50	48	48	52	53	56	61	67
_	Bec			КГ	19	20	25	25	30	30	31	41	41
	Ä	Полная холодопроизводительность (в	роизводительность (выс.)		1.46	1.79	2.38	2.87	3.46	4.26	4.67	6.64	7.88
	охлаждение	Явная холодопроизводительность (вы	c.)	кВт	1.14	1.46	1.85	2.07	2.71	3.09	3.57	4.85	5.85
	Ž	Расход воды		л / час	250	176	409	494	594	730	803	1138	1362
<u>?</u>	ŏ	Гидросопротивление			12	13	16	11	12	12	14	12	16
Ē		Объем воды в теплообменнике		Л	0.5	0.7	0.7	1.0	1.0	1.4	1.4	2.1	2.1
Ę	8	Теплопроизводительность		кВт	1.90	2.01	2.92	3.08	4.80	5.05	5.30	7.91	8.35
4-трубный (**=FN или FV)	HAFPEB	Расход воды		л / час	167	182	257	270	421	443	465	694	733
(1)	ı i	Гидросопротивление		кПа	6	7	4	5	9	12	10	30	30
ě		Объем воды в теплообменнике		Л	0.2	0.2	0.3	0.3	0.4	0.4	0.4	0.6	0.6
4	Потреб	ляемая мощность		Вт	37	53	57	56	98	98	98	182	244
	Расход	воздуха	высокий	м³/час	307	327	432	431	628	690	763	998	1362
	_	ь звуковой мощности	высокий	дБА	45	50	48	47	51	56	59	60	66
	Bec			КГ	20	21	26	26	26	32	33	44	44
ŽE.	Размер труб по воде			1/2"	1/2"	1/2"	1/2"	1/2'	1/2"	1/2"	3/4"	3/4"	
₹ E	Максимальный потребляемый ток А		A	0.17	0.24	0.26	0.25	0.44	0.44	0.43	0.82	1.10	
) Je	Размер труб по воде Максимальный потребляемый ток			564x7	74x226	564x9i	37x226		564x1194x226		564x14	04x251	
2-ip)	Электропитание В-Гц			В-Гц	1~, 230 В, 50 Гц								

^{**} TN – двухтрубный, без трехходового клапана.

TV – двухтрубный, с трехходовым клапаном.

FN – четырехтрубный, без трехходовых клапанов.

FV – четырехтрубный, с трехходовых клапаном.

FWL-DT/DF

Напольно-подпотолочый блок

FWEC1A

ECFWMB6 электромеханический пульт управления

FWL03D

- Изолированный трехходовой клапан: не требует специального дренажного поддона.
- Электронагреватель оснащён 2 термостатами.
- Возможность поставки с трехходовым клапаном, установленным на заводе.
- Простота установки электрических опций: не требуется дополнительных устройств.
- Трехходовой клапан для двухтрубных моделей:
- модель 01-03: E2MV03A6;
- модель 04-06: E2MV06A6;
- модель 08-10: E2MV10A6.
- Трехходовой клапан для четырехтрубных моделей:
- модель 01-03: E4MV03A6;
- модель 04-06: E4MV06A6;
- модель 08-10: E4MV10A6.
- Электромеханический пульт: ECFWMB6.
- Электронный пульт: FWEC1A.
- Дренажный поддон вертикальный: EDPVA6.
- Дренажный поддон горизонтальный: EDPHA6.

комплект трехходового клапана с приводом

Примечание:

Модели FWL-DTV, FWL-DFN и FWL-DFV поставляются под заказ.

F۷	/L()1-10D**			01	02	25	03	35	04	06	80	10
П	ų.	Полная холодопроизводительность (в	ыс.)	кВт	1.54	1.96	2.42	2.93	3.51	4.33	4.77	6.71	8.02
	охлаждение	Явная холодопроизводительность (вы	c.)	кВт	1.20	1.42	1.88	2.11	2.72	3.15	3.65	4.91	5.96
	ξ	Расход воды		л/час	264	337	415	504	602	743	818	1152	1376
2-трубный (**=ТN или TV)	8	Гидросопротивление		кПа	13	12	16	11	12	12	14	12	19
5	m	Теплопроизводительность (выс.)		кВт	2.14	2.57	3.20	3.81	4.78	5.10	5.95	7.83	10.03
=	HAFPEB	Расход воды		л/час	264	337	415	504	602	743	818	1152	1376
	Ŧ	Гидросопротивление		кПа	11	10	13	9	10	10	12	10	16
暑	Потреб	іляемая мощность		Вт	37	53	57	56	98	98	98	182	244
2	Объемь	ы воды в теплообменнике		Л	0.5	0.7	0.7	1.0	1.0	1.4	1.4	2.1	2.1
٦	Расход	воздуха	BыC.	м³/час	319	344	442	442	640	706	785	1011	1393
	Уровен	ь звуковой мощности	выс. / ср. / низ.	дБА	47	50	48	48	52	53	56	61	67
	Bec			КГ	20	21	27	27	32	32	33	44	44
Т	¥	Полная холодопроизводительность (в	ыс.)	кВт	1.46	1.79	2.38	2.87	3.46	4.26	4.67	6.64	7.88
	охла ждение	Явная холодопроизводительность (вы	c.)	кВт	1.14	1.46	1.85	2.07	2.71	3.09	3.57	4.85	5.85
	Ϋ́	Расход воды		л/час	250	176	409	494	594	730	803	1138	1362
-	8	Гидросопротивление		кПа	12	13	16	11	12	12	14	12	16
ĘΓ		Объем воды в теплообменнике		Л	0.5	0.7	0.7	1.0	1.0	1.4	1.4	2.1	2.1
ta l Minu Ni II -) migual A	æ	Теплопроизводительность		кВт	1.90	2.01	2.92	3.08	4.80	5.05	5.30	7.91	8.35
-	HALPEB	Расход воды		л / час	167	182	257	270	421	443	465	694	733
	Ì	Гидросопротивление		кПа	6	7	4	5	9	12	10	30	30
1		Объем воды в теплообменнике		Л	0.2	0.2	0.3	0.3	0.4	0.4	0.4	0.6	0.6
۲	Потреб	іляемая мощность		Вт	37	53	57	56	98	98	98	182	244
	Расход	воздуха	выс. / ср. / низ.	м ³ /час	307	327	432	431	628	690	763	998	1362
		ь звуковой мощности	выс. / ср. / низ.	дБА	45	50	48	47	51	56	59	60	66
			КГ	21	22	28	28	24	34	35	46		
5	Размер	труб по воде			1/2"	1/2'	1/2"	1/2"	1/2'	1/2"	1/2"	3/4"	3/4"
-	Максии	иальный потребляемый ток		A	0.17	0.24	0.26	0.25	0.44	0.44	0.43	0.82	1.10
-injunemi + injunem	Габари	ты (ВхШхГ)		MM	564x	774x226	564x9	37x226		564x1194x226		564x14	104x251
₽1	Электропитание В-Ги			B-Fii	1~. 230 B. 50 Fu								

^{**} TN – двухтрубный, без трехходового клапана.

TV – двухтрубный, с трехходовым клапаном.

FV – четырехтрубный, с трехходовых клапаном.

	m³/4ac	319	344	442	442	640	706	785	1011	1393
НИЗ.	дБА	47	50	48	48	52	53	56	61	67
	КГ	20	21	27	27	32	32	33	44	44
	кВт	1.46	1.79	2.38	2.87	3.46	4.26	4.67	6.64	7.88
	кВт	1.14	1.46	1.85	2.07	2.71	3.09	3.57	4.85	5.85
	л / час	250	176	409	494	594	730	803	1138	1362
	кПа	12	13	16	11	12	12	14	12	16
	л	0.5	0.7	0.7	1.0	1.0	1.4	1.4	2.1	2.1
	кВт	1.90	2.01	2.92	3.08	4.80	5.05	5.30	7.91	8.35
	л / час	167	182	257	270	421	443	465	694	733
	кПа	6	7	4	5	9	12	10	30	30
	л	0.2	0.2	0.3	0.3	0.4	0.4	0.4	0.6	0.6
	Вт	37	53	57	56	98	98	98	182	244
низ.	м³/час	307	327	432	431	628	690	763	998	1362
низ.	дБА	45	50	48	47	51	56	59	60	66
	КГ	21	22	28	28	24	34	35	46	
		1/2"	1/2"	1/2"	1/2"	1/2"	1/2"	1/2"	3/4"	3/4"
	A	0.17	0.24	0.26	0.25	0.44	0.44	0.43	0.82	1.10
	MM	564x7	74x226	564x98	37x226		564x1194x226		564x14	04x251
	В-Гц					1~, 230 В, 50 Гц				
	FN – четырехтру	— /бный, без трехходов	вых клапанов.							

FWT-CT Настенный блок

FWT-C

• Широкий диапазон эксплуатации

- Простые установка и обслуживание
- Центробежный вентилятор с двойным воздухозаборником
- 3 скорости вентилятора
- Съемный моющийся воздушный фильтр
- Возможность установки проводного или упрощенного пульта управления
- Функция автоматического качания заслонок
- Современный дизайн
- Широкий выбор дополнительного оборудования
- Широкие возможности управления
- Защита от самовозгорания

Опции:

- 1) Пульт проводной MERCA.
- 2) Пульт проводной упрощенный SRC.
- 3) ИК-пульт WRC.

Особенности:

- 1) Нет трехходового клапана.
- 2) Частичное регулирование осуществляется изменением скорости вращения вентилятора. Полное регулирование осуществляется термостатом на пульте управления.

FWT02-06C 02 03 04 05 06 3.31 4.54 5.28 2.43 2.70 Полная холодопроизводительность (выс.) охлаждение Явная холодопроизводительность (выс.) кВт 1.85 2.02 2.64 3.43 4.10 420 570 780 910 Расход воды п / час 460 Гидросопротивление кПа 34 24 31 28 32 5.26 3.52 4.40 6.01 HALPEB Теплопроизводительность (выс.) кВт 3.22 Расход воды л/час 420 460 570 780 910 кПа Гидросопротивление 29 25 29 Потребляемая мощность Вт 42 53 72 31 Объемы воды в теплообменнике 0.52 0.58 0.58 0.95 0.95 м³/час 476 Расход воздуха выс. 629 866 1053 дБА 45 48 Уровень звуковой мощности ВЫС 55 59 14 14 Размер труб по воде 1/2" 1/2" 1/2" 1/2 1/2" 0.29 0.34 Максимальный потребляемый ток 0.19 0.20 0.21 310x1065x224 Габариты (ВхШхГ) MM 288x800x206 288x800x206 288x800x206 310x1065x224 В-Гц 1~, 220-240 В, 50 Гц

Номинальная холодопроизводительность указана для следующих условий: температура воздуха в помещении – 27 °C по сухому термометру, 19 °C по влажному термометру; температура воды – 7 °C / 12 °C.

Номинальная теплопроизводительность указана для следующих условий: температура воды на входе – 50 °C, расход воды – как в режиме охлаждения; для четырехтрубных фанкойлов температура воды – 70 °C / 60 °C. Уровень звуковой мошности - в соответствии со стандартом ISO 3711.

Уровень звукового давления измерен на расстоянии 1,5 м - Q=2.

FWF-BT/BF

Кассетный блок (600х600)

комплект трехходового

клапана с приводом

FWF-BT

- Низкое потребление электроэнергии.
- Современный дизайн декоративной панели.
- Возможность подмеса свежего воздуха (необходим дополнительный комплект).
- Комфортное распределение воздушного потока по горизонтали.
- Возможность поставить заглушки на 1 или 2 выходах.
- Дренажный насос в стандартной поставке (высота подъёма 750 мм).
- Декоративная панель BYFQ60B, аналогичная внутренним блокам VRV систем.

Опции:

- 3-ходовой клапан EKMV3C09B7.
- Плата управления EKRP1C11 с креплением KRP1BA101 для трехходового клапана.
- Фильтр с длительным сроком службы KAFQ441BA60.
- Комплект для подмеса свежего воздуха KDDQ44XA60.

Примечание:

Модели FWF-BT, FWF-BF поставляются под заказ.

Двухтрубные

FW	F_BT			02	03	04	05			
Ä	Полная холодопроизводительность (выс.)		кВт	1.7	2.8	3.3	4			
КДЕНИЕ	Явная холодопроизводительность (выс.)		кВт	1.3	1.7	2.1	2.7			
ОХЛА				*	*	*	*			
õ	Гидросопротивление			6	19	31	42			
8	Теплопроизводительность (выс.)		кВт	2.6	3.4	4.1	5.3			
F F	Расход воды		л / час	*	*	*	*			
主	Гидросопротивление	кПа		6	19	31	42			
Потреб	ляемая мощность		Вт	67	67	70	89			
Объемь	ы воды в теплообменнике		Л	*	*	*	*			
Расход	воздуха в	выс. / ср. / низ.	м³/час	468/390/318	468/390/318	660/486/318	876/648/420			
Уровен	ь звуковой мощности в	выс. / ср. / низ.	дБА	44/40/36	44/40/36	50/44/36	55/49/42			
Bec			КГ	19	19	19	19			
Размер	труб по воде			*	*	*	*			
Максил	иальный потребляемый ток		A	*	*	*	*			
Габари	ты (ВхШхГ)		MM	285x575x575						
Электр	опитание		В-Гц	1~, 220-240 В, 50 Гц						

Четырехтрубные

FW	F_BF			02	03	04	05		
¥	Полная холодопроизводительность (выс.)		кВт	1,7	2,3	2,8	3,5		
КДЕНИЕ	Явная холодопроизводительность (выс.)			1,3	1,3	1,7	2,3		
2	Расход воды		л/час	*	*	*	*		
8	Гидросопротивление			6	13	21	33		
8	Теплопроизводительность (выс.)		кВт	3,1	3,3	3,9	4,8		
Ę	Расход воды		л/час	*	*	*	*		
_ ₹	Гидросопротивление		кПа	12	6	9	13		
Потреб	іляемая мощность		Вт	67	62	74	93		
Объем	ы воды в теплообменнике		Л	*	*	*	*		
Расход	воздуха	сверхвыс. / выс. / низ.	m³/час	468/390/318	438/366/300	618/456/300	822/612/390		
Уровен	ь звуковой мощности	сверхвыс. / выс. / низ.	дБА	44/40/36	46/42/38	52/46/38	57/51/44		
Bec			КГ	19	20	20	20		
Размер	Размер труб по воде			*	*	*	*		
Максия	Максимальный потребляемый ток А			*	*	*	*		
Габари	Габариты (ВхШхГ)			285x575x575					
Электр	опитание		В-Гц	1~, 220-240 В, 50 Гц					

Номинальная холодопроизводительность указана для следующих условий: температура воздуха в помещении – 27 °C по сухому термометру, 19 °C по влажному термометру; температура воды – 7 °C / 12 °C.

Номинальная теплопроизводительность указана для следующих условий:

температура воздуха в помещении – 20 °C по сухому термометру, для двухтрубных фанкойлов температура воды на входе – 50 °C, расход воды – как в режиме охлаждения; для четыректрубных фанкойлов температура воды – 70 °C / 60 °C. Уровень звуковой мощности – в соответствии со стандартом ISO 3711.

^{*} Информация на момент публикации отсутствует.

FWF-CT

Кассетный блок (600х600)

SRC

MERCA

FWF-CT

- Комфортное распределение воздушного потока.
- Компактный корпус (570 мм в ширину и глубину) позволяет устанавливать блок в стандартные архитектурные потолочные модули.
- Широкий диапазон эксплуатации
- Простота монтажа и обслуживания.
- Дренажный насос в стандартной поставке (высота подъема 700 мм).
- Мощный поток воздуха.
- 3-скоростной вентилятор.
- Инфракрасный пульт дистанционного управления в стандартной поставке в комплекте с декоративной панелью.
- Декоративная панель DCP600TB.

Двухтрубные

FW	F_CT			FWF02CT	FWF03CT	FWF04CT
Ä	Полная холодопроизводительность (выс.)		кВт	2.49	4.10	4.54
охлаждение	Явная холодопроизводительность (выс.)		кВт	1.91	2.93	3.37
產	Расход воды		л / час	*	*	*
õ	Гидросопротивление		кПа	19.0	27.0	29.0
8	Теплопроизводительность (выс.)		кВт	3.52	4.69	5.28
Ē	Расход воды		л / час	*	*	*
Ì	Гидросопротивление		кПа	17.0	24.0	27.0
Тотреб	ляемая мощность		Вт	63	64	79
Объем	ы воды в теплообменнике		л	*	*	*
расход	воздуха в	выс. / ср. / низ.	м³/час	646	680	748
/ровен	ь звуковой мощности в	выс. / ср. / низ.	дБА	52	54	56
Зес			КГ	22	23	23
Размер	труб по воде				3/4	
Макси	иальный потребляемый ток		A	0.27	0.28	0.34
Габари	ты (ВхШхГ)		MM		250x570x570	
Электо	опитание		В-Ги		1~. 220-240 B. 50 F⊔	

Номинальная холодопроизводительность указана для следующих условий: температура воздуха в помещении (27 °C по сухому термометру, 19 °C по влажному термометру; температура воды) 7 °C / 12 °C.

температура воздуха в помещении - 20 °C по сухому термометру; для 2-трубных фанкойлов температура воды на входе - 50 °C, расход воды - как в режиме охлаждения;

Номинальная теплопроизводительность указана для следующих условий:

Уровень звуковой мощности – в соответствии со стандартом ISO 3711.

^{*} Информация на момент публикации отсутствует.

FWC-BT/BF

Кассетный блок

BRC315D

ROUND FLOW

FWC-BT

- Низкое потребление электроэнергии.
- Возможность подмеса свежего воздуха (необходим дополнительный комплект).
- Комфортное распределение воздушного потока по горизонтали.
- Возможность поставить заглушки на 1 или 2 выходах.
- Дренажный насос в стандартной поставке (высота подъёма 850 мм).
- Декоративная панель BYCQ140C, BYCQ140CW**, аналогичная внутренним блокам VRV систем..

Опции:

- 3-ходовой клапан EKMV3C09B7.
- Плата управления EKRP1C11 с креплением KRP1H98 для трехходового клапана.
- Фильтр с длительным сроком службы КАГР551К160.
- Комплект для подмеса свежего воздуха KDDQ55C140-1(2).

комплект трехходового клапана с приводом

Примечание:

Модели FWC-BT, FWC-BF поставляются под заказ.

Двухтрубные

FW	C_BT			06	07	08	09			
¥	Полная холодопроизводительность (выс.)		кВт	5.0	5.6	6.3	7.2			
дение	Явная холодопроизводительность (выс.)		кВт	3.4	4.0	4.5	5.3			
ξ	Расход воды		л / час	*	*	*	*			
ŏ	Гидросопротивление		кПа	15	19	26	34			
8	Теплопроизводительность (выс.)		кВт	6.3	7.1	8.3	9.5			
본	Расход воды		л / час	*	*	*	*			
Ħ	Гидросопротивление		кПа	15	19	26	34			
Тотреб	іляемая мощность		Вт	40	46	58	76			
)бъем	ы воды в теплообменнике		л	*	*	*	±			
асход	воздуха	выс. / ср. / низ.	м³/час	1062 / 894 / 720	1236 / 1038 / 840	1518 / 1200 / 888	1776 / 1410 /1044			
ровен	ь звуковой мощности	выс. / ср. / низ.	дБА	43 / 36 / 31	47 / 39 / 33	53 / 44 / 36	57 / 49 / 40			
Зес			КГ	26	26	26	26			
Размер	труб по воде			*	*	*	*			
Макси	иальный потребляемый ток		A	*	*	*	±			
абари	ты (ВхШхГ)		MM	MM 288x840x840						
Эпектг	опитание		В-Ги		1~. 220-2	40 B. 50 Fu				

Четырехтрубные

FW	C_BF			06	07	08	09			
EHME	Полная холодопроизводительность (выс.)		кВт	4.9	5.6	6.3	7.2			
吾	Явная холодопроизводительность (выс.)		кВт	3.4	3.9	4.4	5.2			
₹	Расход воды			*	*	*	*			
ŏ	Расход воды Гидросопротивление			15	19	25	32			
8	Теплопроизводительность (выс.)		кВт	6.2	6.8	7.8	8.8			
핕	Расход воды		л / час	*	*	*	*			
₹	Гидросопротивление		кПа	24	30	38	47			
Потреб	іляемая мощность		Вт	41	47	59	77			
Объем	ы воды в теплообменнике		л	*	*	*	*			
Расход	воздуха	выс. / ср. / низ.	м³/час	1032 / 864 / 684	1200 / 1002 / 804	1476 / 1164 / 852	1746 / 1374 / 1014			
Уровен	ь звуковой мощности	выс. / ср. / низ.	дБА	43 / 36 / 31	47 / 39 / 33	53 / 44 / 36	57 / 49 / 40			
Bec			КГ	27	27	27	27			
Размер	азмер труб по воде			*	*	*	*			
Макси	аксимальный потребляемый ток А			*	*	*	*			
Габари	ты (ВхШхГ)		MM	288x840x840						
Электр	опитание		В-Гц		1~, 220-2	240 В, 50 Гц				

— Номинальная холодопроизводительность указана для следующих условий: температура воздуха в помещении − 27 °C по сухому термометру, 19 °C по влажному термометру; температура воздух в помещении − 27 °C по сухому термометру, 19 °C по влажному термометру; температура воздух в помещении − 27 °C по сухому термометру, 19 °C по влажному термометру; температура воздух в помещении − 27 °C по сухому термометру, 19 °C по влажному термометру; температура воздух в помещении − 27 °C по сухому термометру, 19 °C по влажному термометру; температура воздух в помещении − 27 °C по сухому термометру.

Номинальная теппопроизводительность указана для следующих условий: температура воздуха в помещении – 20 °C по сухому термометру; для двухтрубных фанкойлов температура воды на входе – 50 °C, расход воды – как в режиме охлаждения; для четырехтрубных фанкойлов температура воды – 70 °C / 60 °C. Уровень звуковой мощности - в соответствии со стандартом ISO 3711.

^{**} Информация на момент публикации отсутствует.

^{**} Декоративная панель BYCQ140CW поставляется под заказ.

EHMC/EKBT

Гидравлический модуль/Буферный бак

EHMC10-15-30 AV

- В качестве теплоносителя может использоваться вода или растворы этиленгликоля и пропиленгликоля.
- Аккумуляторный бак емкостью 100 л у всех моделей обеспечивает устойчивую работу агрегатов холодопроизводительностью до 80 кВт.
- Отдельная линия электропитания (возможно подсоединение к той же электросети, к которой подключен чиллер).
- Может устанавливаться рядом с чиллером или на расстоянии от него.
- Простота монтажа и электрических соединений с чиллером (патрубок подвода жидкости к гидромодулю на той же высоте, что и выходной патрубок испарителя чиллера).
- Гидравлический модуль снабжен:
- необходимым КИПом;
- предохранительным, спускным воздушным и дренажным клапанами;
- портами для измерения давления воды.
- Удобство настройки всей гидравлической системы посредством встроенного балансировочного вентиля
- Дренажный поддон (в случае наружной установки) опционально 2 варианта поставки: с насосом среднего (в стандартной поставке) или высокого статического давления опционально.

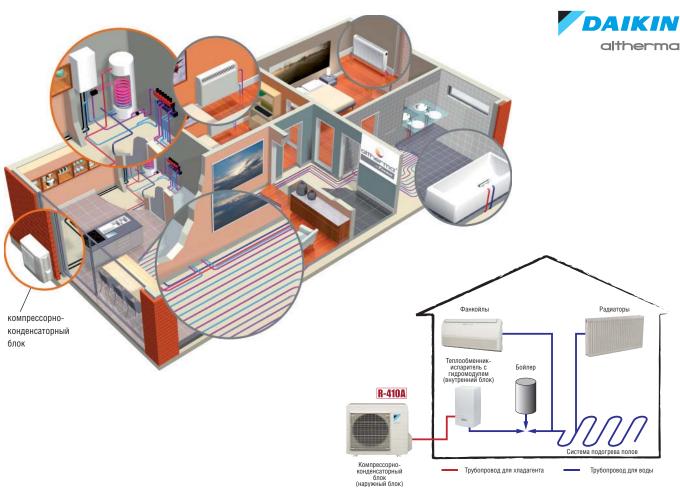
МОДЕЛЬ			EHN	IC10A	EHM	C15A	EHMO	C30A	
МОДЕЛЬ			EHMC10A10	EHMC10A80	EHMC15A10	EHMC15A80	EHMC30A10	EHMC30A80	
Номинальный расход жидкости		л/мин		62	8	88	187		
Номинальный статический напор		м Н2О	17	34	15	27	10	27	
Потребляемая мощность Вт		Вт	630	1050	630	1070	1070	2090	
Габариты (ВхШхГ)		MM	1284x635x688		1284x635x688		1284x635x688		
Вес агрегата (сухой)		КГ	99	101	102	104	105	111	
ровень звуковой мощности		дБА		63	6	63	6	3	
лектропитание		В			1~, 230	В, 50 Гц			
×	по воде	°C			-10 °C	~ 55 °C			
Рабочий температурный диапазон по воздуху °C		°C			-10 °C	~ 43 °C			
Размеры водяных патрубков входа / выхода				1"	2	2"	21	/2"	
Размер дренажного патрубка			1/2*						

Буферный бак

модель		EKBT	EKBT500C	EKBTC10C	EKBT500N	EKBTC10N
Описание			В корпусе	Без корпуса		
Объем	л	200	500	1000	500	1000
Габариты (ВхШхГ)	MM	1284x637x754	1200x1200x1950	1200x1450x1950	710x1670	860x2020
Bec	КГ	86,5	160	185	70	100

DAIKIN ALTHERMA

Низкотемпературное исполнение*


Высокоэффективная система для круглогодичного поддержания комфортных температурных условий в жилых помещениях

ERLQ004-008CV3

- Более высокая энергоэффективность в режиме нагрева, чем у бойлера или электронагревателя за счет применения парокомпрессионного цикла.
- Совместимость с фанкойлами, стандартными радиаторами водяного отопления, системами подогрева полов.
- В режиме охлаждения охлаждение воды до 4 °C для фанкойлов.
- В режиме нагрева подогрев воды до 40-55 °C для радиаторов водяного отопления, теплых полов или для подогрева воды бытового назначения.
- Программируемое изменение температуры по таймеру.
- Компактные размеры элементов системы, гибкость монтажа и простота обслуживания.
- Возможность круглогодичной эксплуатации.

- Адаптация системы под конкретные климатические условия путем выбора одной из трех схем нагрева.
- Поставка оборудования системы, включая бойлер от одного производителя фирмы Daikin.
- Swing или Scroll компрессор Daikin с инверторным управлением.
- Высокая энергоэффективность.
- Озонобезопасный хладагент R-410A.
- Простота монтажа и удобство обслуживания.
- Надежность и долговечность при эксплуатации.

^{*} Максимальная температура нагреваемой воды +50 °C.

DAIKIN ALTHERMA

Split, низкотемпературное исполнение

EHV(H/X)-C

ERLQ004-008C

ER(H/L)Q011-016C

- Настенный или напольный внутренний блок.
- Наружный блок с надежными и экономичными компрессорами SWING и SCROLL.
- Инверторное управление.
- Высокая энергоэффуктивность в режиме нагрева (СОР до 4,5).
- Гибкость системы с возможностью использования различных тепловых приборов.

Наружный блок: 4,6,8 кВт и 11,14,16 кВт

Внутренний блок

Система подогрева полов

ТАБЛИЦА КОМБИНАЦИЙ

			НАРУЖНЫЙ БЛОК							
Температура наружного воздуха до -20 °C						ERHQ-BV3 ERHQ-BW1	ERHQ-BV3 ERHQ-BW1	ERHQ-BV3 ERHQ-BW1		
Температура	наружного воз	вдуха до -25 °C	ERLQ-CV3	ERLQ-CV3	ERLQ-CV3	ERLQ-CV3 ERLQ-CW1	ERLQ-CV3 ERLQ-CW1	ERLQ-CV3 ERLQ-CW1		
Внутренний	блок	Индекс	004	006	008	011	BW1 ERHQ-BW1 ERHQ CV3 ERLQ-CV3 ERLQ CW1 ERLQ-CW1 ERLQ	016		
			Только нагрев							
	EHBH-C	EHBH-C 08		Только нагрев						
Haamaruus		16					Только нагрев			
Настенный		04	Нагрев / охлаждение							
	EHBX-C	08		Нагрев / о	хлаждение					
		16					Нагрев / охлаждение			
		04	Нагрев и горячая вода							
	EHVH-C	08		Нагрев и го	рячая вода					
		16				ŀ	Нагрев и горячая вод	a		
Напольный		04	Нагрев / охлаждение и горячая вода							
	EHVX-C	08		Нагрев / охлажден	ние и горячая вода					
		16				Нагрев	/ охлаждение и горяч	ая вода		

	БОЙЛЕР	
EKSWP-B	EKHWS-B	EKHWE-A
300-500	150-200-300	150-200-300

Горячая вода + комплект солнечного коллектора (дополнительное оборудование)

ВНУТРЕННИЙ БЛОК НАСТЕННЫЙ

МОДЕЛЬ				EHBH04C3V	EHBX04C3V	EHBH08C3V EHBH08C9W	EHBX08C3V EHBX08C9W	EHBH16C3V EHBH16C9W	EHBX16C3V EHBX16C9W
Режим работы		только нагрев	нагрев / охлаждение	только нагрев	нагрев / охлаждение	только нагрев	нагрев / охлаждение		
Потребляемая мощность	мая мощность к		кВт	0.075		0.075		0.	18
Габариты	абариты (ВхШхГ) мм		MM	890x4	80x344	890x4	890x480x344		80x344
Bec			КГ	44		46 / 48		45	/ 48
		Окр.воздух	°C	-25	5~25	-25~25		-25~35	
	Нагрев (мин-макс)	Вода	°C	15~55		15~55		15~55	
D-6	Охлаждение	Окр.воздух	°C		10-43		10-43		10-46
Рабочий диапазон температур	(мин-макс)	Вода	°C		5-22		5-22		5-22
	Бойлер	Окр.воздух	°C	-25	5~35	-25	~35	-25~35	
(мин-макс)		Вода	°C	25	~80	25~80		25~80	
Уровень звукового давления Нагрев дБА		26		26		33			
Электропитание (V/W)			В			V: 1~, 230 В, 50 Гц	/ W: 3~.400B. 50Гц		

ВНУТРЕННИЙ БЛОК НАПОЛЬНЫЙ

модель				EHVH04S18C3V	EHVX04S18C3V	EHVH08S18C3V EHVH08S26C9W	EHVX08S18C3V EHVX08S26C9W	EHVH16S18C3V EHVH16S26C9W	EHVX16S18C3V EHVX16S26C9W
Режим работы			только нагрев	нагрев / охлаждение	только нагрев	нагрев / охлаждение	только нагрев	нагрев / охлаждение	
Потребляемая мощность			кВт	0.	075	0.0	075	0.	19
Габариты	(ВхШхГ)		MM	1732xi	600x728	1732x600x728		1732x600x728	
Bec			КГ		115		117 / 126	120 / 129	121 / 129
		Окр.воздух	°C	-25~25 15~55		-25~25		-25	i~35
	Нагрев (мин-макс)	Вода	°C			15~55		15~55	
D	Охлаждение	Окр.воздух	°C		10-43		10-43		10-46
Рабочий диапазон температур	(мин-макс)	Вода	°C		5-22		5-22		5-22
	Бойлер	Окр.воздух	°C	-25	i~35	-25	~35	-20~35	
	(мин-макс)	Вода	°C	25~60		25~60		25~60	
Уровень звукового давления	Уровень звукового давления Нагрев дБА		дБА	28		28		33	
Электропитание (V/W)			В			V: 1~. 230 B. 50 Fu	/ W: 3~.400B. 50Fu		

НАРУЖНЫЙ БЛОК

ОХЛАЖДЕНИЕ / НАГРЕВ

модель	Без нагревателя др	енажного поддона	ERHQ011BV/BW	ERHQ014BV/BW	ERHQ016BV/BW			
	Нагрев	кВт	11.2 / 11.3	14.0 / 14.5	16.0 / 16.1			
Производительность (минноммакс.)	Охлаждение	кВт	10.0 / 11.7	12.5 / 12.6	13.1 / 13.1			
D	Нагрев	кВт	2.55 / 2.63	3.26 /3/42	3.92 /3.82			
Потребляемая мощность (ном.)	Охлаждение	кВт	3.69 / 4.31	5.38 / 5.09	6.04 / 5.74			
Коэффициент СОР (нагрев)			4.39 / 4.30	4.29 / 4.24	4.08 / 4.20			
Коэффициент EER (охлаждение)			2.71 / 2.72	2.32 / 2.47	2.17 / 2.29			
Габариты	ВхШхГ	MM	1170x900x320 / 1340x900x320					
Bec		КГ		103 / 108				
	Нагрев	°C		-20~35				
Диапазон работы	Охлаждение	°C		10~46				
	Подогрев воды	°C		-20~43				
Manager and Manage	Нагрев	дБА	49 / 51	51	53 / 51			
Уровень звукового давления	Охлаждение	дБА	50	52	54			
Заправка хладагентом	R-410A	КГ	·	3.7 / 2.95				
Электропитание (V/W)		В		1~,230 В, 50 Гц / 3~, 400В, 50Гц				

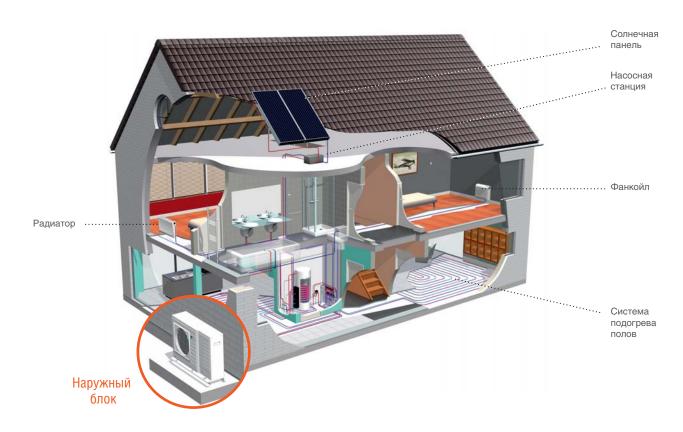
НАРУЖНЫЙ БЛОК

ОХЛАЖДЕНИЕ / НАГРЕВ

МОДЕЛЬ	С нагревателем др	енажного поддона	ERLQ004CV	ERLQ006CV	ERLQ008CV	ERLQ011CV/W	ERLQ014CV/W	ERLQ016CV/W	
	Нагрев	кВт	1.8~4.4~5.1	1.8~6.0~8.4	1.8~7.4~10.0	11.2 / -11.4-	14.5 / -14.6-	16.0 / -16.1-	
Производительность (минноммакс.)	Охлаждение	кВт	2.0~5.0	2.5~6.8	2.5~6.9	15.1 / -11.7-	16.1 / -12.6-	16.8 / -13.2-	
Потребляемая мощность (ном.)	Нагрев	кВт	0.87	1.96	2.01	2.56 / 2.64	3.42 / 3.43	3.81 / 3.83	
	Охлаждение	кВт	1.48	2.07	2.34	4.53 / 4.31	5.43 / 5.09	5.16 / 5.74	
Коэффициент СОР (нагрев)			5.04	4.74	4.45	4.38 / 4.31	4.24	4.20	
Коэффициент EER (охлаждение)		3.37	3.45	3.42	3.32 / 2.72	2.96 / 2.47	3.26 / 2.29		
Габариты	ВхШхГ	MM	735x825x307 1345x900x320						
Bec		КГ	54		6		113/114		
	Нагрев	°C		-15~25		-25~35			
Диапазон работы	Охлаждение	°C		10~43		10~46			
	Подогрев воды	°C		-25~35			-20~35		
V	Нагрев	дБА		48	49		51	52	
Уровень звукового давления	Охлаждение	дБА	48	49	50	50	52	54	
Заправка хладагентом	R-410A	КГ	1.45 1.6 3.4						
Электропитание (V/W)		В	1~	1~,230 В, 50 Гц / 3~, 400В, 50Гц		1~	,230 В, 50 Гц / 3~, 400В, 5	60Гц	

DAIKIN ALTHERMA

Моноблок, низкотемпературное исполнение



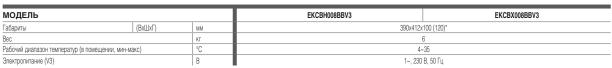
EBHQ-BV3

EKCBH(X)-BB

- Однофазный моноблок нагрев/охлаждение холодопроизводительность 6 и 8 кВт (EBHQBV3).
- Моноблок нагрев/охлаждение11-14-16 кВт: с нагревателем дренажного поддона EDLQ-B; без нагревателя дренажного поддона EDHQ-B.
- Надежные и экономичные компрессоры SWING и SCROLL.
- Инверторное управление.
- Высокая энергоэффективность в режиме нагрева (СОР до 4,5).
- Возможность использования системы с различными тепловыми приборами.

ТАБЛИЦА КОМБИНАЦИЙ ALTHERMA

		НАРУЖНЫЙ БЛОК	
С нагревателем поддона		EBLQ-BB6V3 EBLQ-BB6W1	EDLQ-BB6V3 EDLQ-BB6W1
С нагревателем поддона	EBHQ-BV3	EBHQ-BB6V3 EBHQ-BB6W1	EDHQ-BB6V3 EDHQ-BB6W1
006	Disease Leversoner		
008	Нагрев / охлаждение		
011			
014		Нагрев / охлаждение	Только нагрев
016			·


БОЙ	ЛЕР
EKHWS-B	EKHWE-A
150-200-300	150-200-300

Горячая вода + комплект солнечного коллектора (дополнительное оборудование)

БЛОК КОНТРОЛЯ

ТОЛЬКО НАГРЕВ

ОХЛАЖДЕНИЕ / НАГРЕВ

НАРУЖНЫЙ БЛОК

ОХЛАЖДЕНИЕ / НАГРЕВ

МОДЕЛЬ 6∼8 кВт				EBHQ006BBV3	EBHQ008BBV3		
Габариты		(ВхШхГ)	MM	805x1190x360			
Номинальная производительность		Нагрев	Вт	6.00	8.85		
		Охлаждение	Вт	7.0	8.37		
		Нагрев	Вт	2.20	2.97		
		Охлаждение	Вт	1.41	2.21		
Коэффициент СОР (нагрев)				4.26	4.00		
Коэффициент EER (охлаждение)				3.18	2.82		
Рабочий диапазон температур Нагрев		Нагрев	0℃	-15~25°С (по вла:	кному термометру)		
окружающего воздуха		Охлаждение	°C	10~43°С (по сухому термометру)			
Температура воды		Нагрев	°C	15~50			
		Охлаждение	°C	5-	~22		
Бойлер	Температур о	кружающего воздуха	°C	-15~35 (no cyx	ому термометру)		
	Температура	воды	°C	25	~80		
Уровень звукового давления	Нагрев		дБА	48	49		
, ,	Охлаждение		дБА	48	50		
Bec		КГ	95				
Заправка хладагентом		R-410A	КГ	1.7			
Электропитание (V3)			В	1~, 230 В, 50 Гц			

Охлаждение: Ta 35 °C - LWE 18 °C (DT = 5 °C) Harpeв: Ta DB/WB 7 °C/6 °C - LWC 35 °C (DT = 5 °C)

НАРУЖНЫЙ БЛОК

ТОЛЬКО НАГРЕВ

ОХЛАЖДЕНИЕ / НАГРЕВ

МОДЕЛЬ 11~16 кВт	С нагревателем дрен	эжного поддона	EDLQ011BB6V3/W1	EDLQ014BB6V3/W1	EDLQ016BB6V3/W1	EBLQ011BB6V3/W1	EBLQ014BB6V3/W1	EBLQ016BB6V3/W1	
МОДЕЛВ 11∼16 КВ1	Без нагревателя дренажного поддона		EDHQ011BB6V3/W1	EDHQ014BB6V3/W1	EDHQ016BB6V3/W1	EBHQ011BB6V3/W1	EBHQ014BB6V3/W1	EBHQ016BB6V3/W1	
Габариты	(ВхШхГ)	MM		1418x1435x382			1418x1435x382		
Номинальная производительность	Нагрев	Вт	11.2	14.0	16.0	11.2	14.0	16.0	
	Охлаждение	Вт				12.9	16.0	16.7	
Потребляемая мощность	Нагрев	Вт	2.56 / 2.60	3.29 / 3.30	3.88/ 3.81	2.56 / 2.60	3.29 / 3.30	3.88 / 3.81	
	Охлаждение	Вт		-		3.87	5.75 / 5.40	6.36 / 6.15	
Коэффициент СОР (нагрев)			4.38 / 4.31	4.25 / 4.24	4.12 / 4.20	4.38 / 4.31	4.25 / 4.24	4.12 / 4.20	
Коэффициент EER (охлаждение)						3.32	2.78 / 2.96	2.63 / 2.72	
Диалазон работы	Нагрев	°C	15~35 (EBHQ) / -20(-25)~35 (EBLQ)			15~	35 (EBHQ) / -20(-25)~35 (E	BLQ)	
	Охлаждение	°C					10~46		
	Подогрев воды	°C	15~4	3 (EBHQ) / -20(-25)~43 (E	BLQ)	15~43 (EBHQ) / -20(-25)~43 (EBLQ)			
Уровень звукового давления	Нагрев	дБА	51 / 49	51	52 / 53	51 / 49	51	52 / 53	
	Охлаждение	дБА			-	50	52	54	
Bec		КГ		180		180			
Заправка хладагентом	R-410A	КГ		2.95			2.95		
Электропитание (V3/W) B			1~,230 В, 50 Гц / 3~,400 В, 50 Гц			1~,230 В, 50 Гц / 3~,400 В, 50 Гц			
Рекомендуемый ток		A	32			32			

Охлаждение: Ta 35 °C - LWE 18 °C (DT = 5 °C) Нагрев: Ta DB/WB 7 °C/6 °C - LWC 35 °C (DT = 5 °C)

НАРУЖНЫЙ БЛОК

ТОЛЬКО НАГРЕВ ОХЛАЖДЕНИЕ / НАГРЕВ

МОДЕЛЬ	С нагревателем дренажного поддона	EDLQ011BB6V3/W1	EDLQ014BB6V3/W1	EDLQ016BB6V3/W1	EBLQ011BB6V3/W1	EBLQ014BB6V3/W1	EBLQ016BB6V3/W1
МОДЕЛЬ	Без нагревателя дренажного поддона	EDHQ011BB6V3/W1	EDHQ014BB6V3/W1	EDHQ016BB6V3/W1	EBHQ011BB6V3/W1	EBHQ014BB6V3/W1	EBHQ016BB6V3/W1
	EKHWS150B3V3	•	•	•	•	•	•
Бойлер внутренней установки	EKHWS200B3V3	•	•	•	•	•	•
из нержавеющей стали	EKHWS300B3V3	•	•	•	•	•	•
	EKHWE150A3V3	•	•	•	•	•	•
Бойлер внутренней установки	EKHWE200A3V3	•	•	•	•	•	•
из эмалированной стали	EKHWE300A3V3	•	•	•	•	•	•
	EKHWET150A3V3	•	•	•	•	•	•
Нагревательный элемент	EKSOLHWAV1	•	•	•	•	•	•
Проводной контроллер	EKRTW	•	•	•	•	•	•
Беспроводной контроллер	EKRTR+EKRTETS	•	•	•	•	•	•

^{*} размер с смонтированным на фронтальной плоскости пультом управления

DAIKIN ALTHERMA Низкотемпературное исполнение

БОЙЛЕР

модель			EKHWP300B	EKHWP500B			
Объем воды л		Л	300	500			
Температура воды °C		°C	85				
Габариты		MM	1590x595x615	1590x790x790			
Bec		KΓ	59	92			
	Материал		Нержавеющая сталь				
T	Объем	Л	27.8	28.4			
Теплообменник для горячей воды для бытовых целей	Макс. раб. давление	бар	6	6			
воды для орновых делем	Поверхн. теплообмен.	M ²	5.7	5.9			
	Сред. удельн. теплопроизв.	Вт/К	2795	2860			
	Материал		Нержавеющая сталь				
T6	Объем	Л	12.3	17.4			
Теплообменник нагрева	Поверхн. теплообмен.	M ²	2.5	3.7			
	Сред. удельн. теплопроизв.	Вт/К	1235	1809			
Теплообменник для вспомогательного нагрева за счет солнечной энергии	Материал		Нержавеющая сталь				
	Объем	Л		5			
	Поверхн. теплообмен.	M ²		1.0			
	Сред. удельн. теплопроизв.	Вт/К		313			

БОЙЛЕР

модель	EKHWS150B3V3	EKHWS200B3V3	EKHWS300B3V3	EKHWE150A3V3	EKHWE200A3V3	EKHWE300A3V3	
Объем воды	Л	150	200	300	150	200	300
Температура воды °C		85			75		
Габариты	MM	900x580x580	1150x580x580	1650x580x580	1205x545	1580x545	1572x660
Bec	КГ	37	45	59	80	104	140
Материал кВт		Сталь с эпоксидным покрытием			Сталь с эпоксидным покрытием		
Цвет	Белый			RAL9010			
Теплообменник для горячей воды для бытовых целей Материал		Сталь-дуплекс LDX 2101					
Бустерный электрический нагреватель (1 шт.) кВт		3			3		
Параметры электропитания	1~; 230В; 50Гц			1~; 230В; 50Гц			

СОЛНЕЧНЫЙ КОЛЛЕКТОР

МОДЕЛЬ			EKSOLHWAV1		
Габариты	(ВхШхГ)	MM	770x305x270		
Теплообменный аппарат	Гидросопротивление	кПа	21.5		
	Максимальная темп. на входе	°C	110		
Температура	Максимальная	°C	35		
окружающей среды	Минимальная	°C	1		
Электропитание (V)			1-,220-240 В, 50 Гц		
Потребитель энергии			Внутренний блок		

КОМНАТНЫ	Й TFPM	IOCT/	ΔT EKRTW	EK	EKRTETS		
				Термостат	Ресивер	(опция)	
Габариты	(ВхШхГ)	MM	87x125x34	87x125x34	170x50x28	3 м провод	
Bec r		Г	215	210	125	65	
Диапазон температур	Хранение	°C	-20~60	-20~60	-20~60	-20~60	
	Работа	°C	0~50	0~50	0~50	0~50	
Диапазон установки температур	Нагрев	°C	4~37	4~37	-	-	
Температура окружающей среды	Охлаждение	°C	4~37	4~37	-	-	
Часы			Да	Да	-	-	
Способ пегупилования				Подоримональный			

НАСОСНАЯ СТАНЦИЯ

·					
модель			EKSRDS1A с контроллером EKSR3PA		
Монтаж			Настенный		
Габариты мм		М	332x230x145		
Параметры электропитания			1∼/230B/50Г⊔		

СОЛНЕЧНАЯ ПАНЕЛЬ

модель			EKSV26P	EKSH26P		
Установка			Вертикальная	Горизонтальная		
Габариты	ВхШхГ	MM	2000x1300x85	1300x2000x85		
Поверхность	Внешняя	M ²	2.6			
	Поглотитель	M ²	2.36			
Bec Kr			43			
Объем воды л		л	1.7	2.1		
Абсорбер			Изогнутая медная трубка с приваренной лазером алюминиевой пластиной			
Покрытие			Микро-терм			
Остекление			Однопанельное защитное стекло, передача +/-92%			
Изоляционный материал			Минеральная вата, 50 мм			
Максимальное падение давления при расходе 100 л/ч мбар		мбар	3	0.5		
Допустимый угол наклона крыши			15-80°			
Максимальная температура в нерабочем состоянии °C			200			
		бар	6	6		

DAIKIN ALTHERMA

Split, высокотемпературное исполнение*

Высокоэффективная система для круглогодичного поддержания комфортных температурных условий в жилых помещениях

1 – Тепловой насос с передачей теплоты от воздуха к воде.

А / Наружный блок: эффективное использование энергии наружного воздуха

Наружный блок забирает теплоту из окружающей среды. Эта теплота передается внутреннему блоку по трубопроводам с холодильным агентом.

В / Внутренний блок: сердце системы Altherma ·

Внутренний блок получает теплоту из наружного, повышая в дальнейшем температуру воды до 80 °С для использования в радиаторах и для бытовых нужд. Уникальное решение Daikin, примененное в компрессорах теплового насоса (один компрессор в наружном блоке / один компрессор во внутреннем блоке), подразумевает наиболее комфортные условия даже при самых низких температурах окружающей среды, при этом не требуется дополнительный электронагреватель.

2 – Бойлер (горячая вода для бытовых нужд) · · · ·

Altherma фирмы Daikin является идеальным устройством для подготовки воды для бытовых нужд, при этом не требуется применение дополнительного электрического нагревателя. Быстрый нагрев расходуемой воды также подразумевает, что требуются радиаторы меньших размеров. Лучшим решением для семьи из 4 человек будет стандартный бак ЕКНТS200A. Если потребуется больше горячей воды, можно установить бак большего номинала ЕКНТS260A.

3 – пульт управления

С пользовательским интерфейсом Daikin Altherma создать идеальный температурный режим можно будет легче, быстрее и удобнее. Он позволяет проводить измерение параметров состояния с высокой точностью и оптимально поддерживать комфортные условия с высокой степенью энергоэффективности.

Нагрев воздуха и бытовой воды с помощью солнечной энергии.

Установка Altherma фирмы Daikin может использовать солнечную энергию для нагрева воды. Если в данный момент для нагрева воды солнечная энергия не требуется, специальный водяной бак (ЕКНWР) может хранить большое количество воды до тех пор, пока она не потребуется для бытовых нужд или для отопления.

^{*} Температура подогреваемой воды +80 °C.

ВНУТРЕННИЙ БЛОК (ТЕПЛООБМЕННИК-ИСПАРИТЕЛЬ С ГИДРОМОДУЛЕМ)

модель				EKHBRD011ACV1	EKHBRD014ACV1	EKHBRD016ACV1	EKHBRD011ACY1	EKHBRD014ACY1	EKHBRD016ACY1	
Цвет					Серый металлик		Серый металлик			
Материал				Листовой металл с предварительно нанесенным покрытием						
Габариты (ВхШхГ) мм			MM		705x600x695		705x600x695			
Вес кг			ΚΓ		144.25			147.25		
		Окр.воздух	°C		-20 ~20		-20 ~20			
Рабочий диапазон	Нагрев (мин-макс)	Вода	°C		25~80			25~80		
температур	F-*	Окр.воздух	°CDB		-20~35		-20~35			
	Бойлер	Вода	°C		25~80		25~80			
Хладагент	Тип/ Количество		ΚΓ	R-134a /3,2			R-134a /3,2			
V		Номинальный	дБА	43/ 46	45/ 46	46 / 46	43/ 43	45/ 45	46 / 46	
Уровень звукового да	вления	Ночной режим дБА 40 43			43	45	40	43	45	
Параметры электропитания				V: 1~, 230 В, 50 Гц			Ү: 3~,380~415В, 50Гц			
Плавкий предохранит	ель (рекомендуемый)		Α		25		16			

НАРУЖНЫЙ БЛОК

МОДЕЛЬ	С нагревателем дренаж	ного поддона	ERRQ011AV	ERRQ014AV	ERRQ016AV	ERRQ011AY1	ERRQ014AY1	ERRQ016AY1	
	Без нагревателя дренаж	ного поддона	ERSQ011AV	ERSQ014AV	ERSQ016AV	ERSQ011AY1	ERSQ014AY1	ERSQ016AY1	
Габариты	ариты (ВхШхГ)			1345x900x320			1345x900x320		
Номинальная производительность Нагрев		кВт	11	14	16	11	14	16	
Потребляемая мощность ¹ Нагрев		кВт	3,57	4,66	5,57	3,57	4,66	5,57	
Коэффициент СОР (нагрев)	1		3.08	3.00	2.88	3.08	3.00	2.88	
Потребляемая мощность ² Нагрев		кВт	4.40	5.65	6.65	4.40	5.65	6.65	
Коэффициент СОР (нагрев)	2		2.50	2.48	2.41	2.50	2.48	2.41	
Пистерии побежи	Нагрев	°C		-20~20		-20~20			
Диапазон работы	Подогрев воды	°C		-20~35			-20~35		
Уровень звуковой мощности	Нагрев	дБА	68	69	71	68	69	71	
Уровень звукового давления	Нагрев	дБА	52	53	55	52	53	55	
Вес кг			120			120			
Заправка хладагентом	R-410A	КГ	4.5			4.5			
Параметры электропитания		В	1~,220-240 В, 50 Гц			3∼,400 В, 50 Гц			

БОЙЛЕР

МОДЕЛЬ			EKHTS200AC	EKHTS260AC		
Объем воды л			200 260			
Температура воды		°C	75 75			
Габариты		MM	1335x600x695	1610x600x695		
Габариты встроенного внутреннего блока м			2010x600x695	2285x600x695		
Bec		КГ	70	78		
Материал корпуса			Сталь			
Цвет			Серый металлик			
Материалы бака			Нержавеющая сталь			
T	Материал		Ст	аль		
Теплообменник для горячей воды для бытовых целей	Объем	Л	7.5	7.5		
тым овиовых неисм	Поверхн. теплообмен.	M ³	1.56	1.56		
Параметры электропитания В			1~,220-240 В, 50 Гц			

БОЙЛЕР

МОДЕЛЬ			EKHWP300B	EKHWP500B			
Объем воды		Л	300	500			
Температура воды		°C	8	5			
Габариты		MM	1590x595x615	1590x790x790			
Bec		KΓ	59	92			
Теплообменник для горячей воды	Материал		нержавеющая сталь				
для бытовых целей	Объем	Л	27.8	28.4			
	Макс. раб. давление бар		6	6			
	Поверхн. теплообмен. м ²		5.7	5.9			
	Сред. удельн. теплопроизв.	Вт/К	2795	2860			
Теплообменник нагрева	Материал		Нержавеющая сталь				
	Объем	Л	12.3	17.4			
	Поверхность теплообмена	M ²	2.5	3.7			
	Сред. удельн. теплопроизв.	Вт/К	1235	1809			
Теплообменник для	Материал		Нержавек	ицая сталь			
вспомогательного нагрева за счет солнечной энергии	Объем	Л		5			
	Поверхн. теплообмен.	M ²		1.0			
	Сред. удельн. теплопроизв.	Вт/К		313			

НАСОСНАЯ СТАНЦИЯ

модель		EKSRPS3			
Монтаж		На бойлере			
Габаритные размеры (В х Ш х Г)	MM	815x230x142			
Потребляемая мощность	Вт	245			
Параметры электропитания		1~; 230В; 50Гц			

¹ Условия измерения: входящая вода: 55 °С, выходящая вода 65 °С, △Т=10 °С; Та=DB/WB 7 °С/6 °С. 2 Условия измерения: входящая вода: 70 °С, выходящая вода 80 °С, △Т=10 °С; Та=DB/WB 7 °С/6 °С.

DAIKIN ALTHERMA

Split высокотемпературное исполнение

СОЛНЕЧНАЯ ПАНЕЛЬ

МОДЕЛЬ			EKSV26P	EKSH26P				
Установка			Вертикальная	Горизонтальная				
Габариты	ВхШхГ	MM	2000x1300x85	1300x2000x85				
Поверхность	Внешняя	M ²	2	26				
	Поглотитель	M ²	2	.36				
Bec		KΓ	43					
Объем воды л			1.7	2.1				
Абсорбер			Изогнутая медная трубка с приварен	ной лазером алюминиевой пластиной				
Покрытие			Микро-терм					
Остекление			Однопанельное защитное стекло, передача +/-92%					
Изоляционный материал			Минеральна	ая вата, 50 мм				
Максимальное падение давлени	ия при расходе 100 л/ч	мбар	3	0.5				
Допустимый угол наклона крыш	И		15-80°					
Максимальная температура в нерабочем состоянии °C			200					
Максимальное рабочее давлени	1e	бар	6	6				

КОНВЕКТОР ДЛЯ ТЕПЛОВЫХ НАСОСОВ С ФУНКЦИЕЙ ПЕРЕДАЧИ ДАННЫХ

Конвектор для тепловых насосов с функцией передачи данных Daikin существенно повышает общую эффективность системы Altherma.

В современных домах с хорошей теплоизоляцией эффективной считается комбинация «теплых полов» и радиаторов. Но это решение не является идеальным: для системы подогрева полов требуется вода меньшей температуры, чем для радиаторов. И если комнатные радиаторы используются для достижения требуемых показателей при меньшей температуре воды, они будут переразмерены.

Для решения этой проблемы был разработан конвектор Daikin для теплового насоса с функцией передачи данных. Конвектор способен передавать требуемое количество теплоты при низкой температуре воды, сохраняя при этом скромные размеры. Вместо того, чтобы перекрывать трубопровод с выходящей водой по сигналу термостата, установленного только в одном основном помещении, каждый конвектор может напрямую присоединяться к внутреннему блоку Altherma. Это позволяет всем помещениям, независимо от их статуса, получать тепло.

KOHBEKTOP

модель				FWXV15AVEB	FWXV20AVEB		
	Нагрев	Harpeв 45 °C¹		45 °C¹ кВт		1.5	2.0
Производительность	Охлаждение	7 °C2	кВт	1.2	1.7		
	Охлаждение	18 °C³	кВт	0.3	0.4		
Габариты	ВхШхГ мм			600x700x210			
Bec			КГ	15			
Расход воздуха (макс./сред./мин./ночн.)			M ³ /4	318/228/150/126	474/354/240/198		
Звуковое давление (номин.)			дБА	19	29		
Хладоноситель				Вода			
Параметры электропитания				1∼ / 220-240 В / 50 / 60 Гц			
Трубопровол	Вола (НЛ) / Л	ренаж		12:	7 / 18		

¹ Температура воды на входе=45 °C / Температура воды на выходе: 40 °C - Температура внутри помещения=27 °C CT/19 °C ВТ – средняя скорость.

² Температура воды на входе=7 °C / Температура воды на выходе: 12 °C - Температура внутри помещения=20 °C СТ – средняя скорость.

³ Температура воды на входе=18 °C / Температура воды на выходе: 23 °C - Температура внутри помещения=20 °C СТ − средняя скорость.

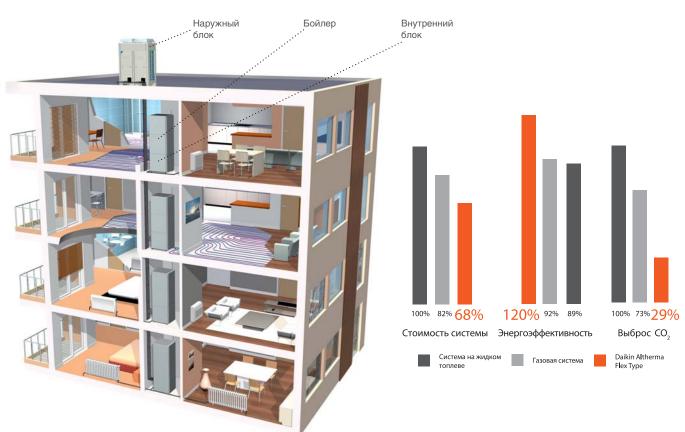
DAIKIN ALTHERMA

Высокотемпературное исполнение для многоквартирных домов

altherma

Наружный блок

Внутренний блок


Современным климатическим системам для многоквартирных домов свойственна растущая стоимость, высокое потребление электроэнергии, повышенный уровень выброса углекислого газа, а также недостаточные возможности охлаждения. Поэтому компания Daikin адаптирует свой широко известный тепловой насос Altherma для использования в крупных жилых зданиях.

Тепловой насос Daikin Altherma для многоквартирных домов способен эффективно нагревать (до 80 °C) воду для отопления помещений, охлаждать (с помощью фанкойлов или системы трубопроводов под полом), а также нагревать воду для бытовых нужд. Его превосходная эффективность (тепловой коэффициент до 3.5) достигнута благодаря способности рекуперировать теплоту наружного воздуха. Есть возможность повысить температуру потребляемой воды до 80 °C, также установка способна охлаждать воду до 5 °C. При эксплуатации теплового насоса Daikin Altherma потребление электроэнергии снижается на 34%, выброс CO₂ на 62%, а стоимость системы при этом на 44% меньше, чем аналогичной системы с газовым бойлером.

Daikin Altherma состоит из наружного блока (или системы наружных блоков, если необходимо) и внутренних блоков для каждого помещения.

Фреоновые трубопроводы между наружным и внутренними блоками меньше, чем водяные трубопроводы аналогичных систем, благодаря этому система занимает меньше полезного пространства. Перепад высот между наружным блоком и самым нижним внутренним может достигать 50 м. Внутренние блоки достаточно тихие (до 40 дБА) и приспособлены для установки даже в небольшом техническом помещении площадью до 2 м².

ВНУТРЕННИЙ БЛОК

ТОЛЬКО НАГРЕВ

ОХЛАЖДЕНИЕ / НАГРЕВ

МОДЕЛЬ				EKHVMRD50A	EKHVMRD80A	EKHVMYD50A	EKHVMYD80A		
Цвет				Серый металлик					
Материал					Листовой металл с предварительно нанесенным покрытием				
Габариты (ВхШхГ)			MM	705x€	00x695	705x6	00x695		
Bec			КГ	9	92	1	20		
	Нагрев	Окружающая среда	°C	-15	5~20	-15	5~20		
	пагрев	Вода	°C	25	~80	25~80			
П	0	Окружающая среда	°C			10	~43		
Диапазон работы	Охлаждение	Вода	°C			5~20			
	Положения поли	Окружающая среда	°C	-15	5~35	-15~35			
	Подогрев воды	Вода	°C	45	~75	45~75			
Хладагент		Тип / количество	КГ	R-10	34a /2	R-134a /2			
Vanas::: 00::/0005		Номинальный	дБА	40 / 43	42 / 43	40 / 43	42 / 43		
Уровень звукового) давления	Ночной режим	дБА	:	38	38			
Параметры электропитания В			В		1~,220-24	40 В, 50 Гц			
Плавкий предохра	анитель (рекоменду	vемый)	I A	2	20		20		

ВНУТРЕННИЙ БЛОК

ТОЛЬКО НАГРЕВ

модель				EKHBRD011ACV1	EKHBRD014ACV1	EKHBRD016ACV1	EKHBRD011ACY1	EKHBRD014ACY1	EKHBRD016ACY1	
Цвет				Серый металлик			Серый металлик			
Материал				Листовой металл с предварительно нанесенным покрытием						
Габариты (ВхШхГ) мм			MM		705x600x695		705x600x695			
Bec			КГ		144.25			147.25		
	Heren	Окружающая среда	°C		-20 ~20		-20 ~20			
П	Нагрев	Вода	°C		25~80		25~80			
Диапазон работы		Окружающая среда	°C		-20~35		-20~35			
	Подогрев воды	Вода	°C		25~80		25~80			
Хладагент		Тип / количество	КГ	R-134a /3,2			R-134a /3,2			
Vaana anan		Номинальный	дБА	43/ 46	45/ 46	46 / 46	43/43	45/ 45	46 / 46	
Уровень звукового	о давления	Ночной режим	дБА	40	43	45	40	43	45	
Параметры электропитания В			В	V: 1~, 230 В, 50 Гц			Y: 3~,380~415B, 50Гц			
Плавкий предохранитель (рекомендуемый) А			А	25			16			

НАРУЖНЫЙ БЛОК

модель			EMRQ8AAY	EMRQ10AAY	EMRQ12AAY	EMRQ14AAY	EMRQ16AAY			
Производительность	ительность Нагрев		22.4	28	33.6	39.2	44.8			
(HOM.)	Охлаждение	кВт	20	25	30	35	40			
Габариты	ВхШхГ	MM			1680x1300x765					
Bec		КГ		331	3	39				
D. ()	Нагрев (минмакс.)	0℃		-15~20						
Рабочий диапазон	Охлаждение (минмакс.)	°CDB	10~43							
температур	Бойлер (Окруж.)	0℃		-15~35						
Хладагент	Тип				R-410A					
	Жидкость / Газ/ Газ (нагнетание) мм		9.52 / 19.1 / 15.9	9.52 / 19.1 / 15.9 9.52 / 22.2 / 19.1 12.7 / 28.6 / 19.1 12.7 / 28.6 /		12.7 / 28.6 / 22.2	12.7 / 28.6 / 22.2			
T	Длина трассы максимальн	и п	100							
Трубопровод	Длина трассы общая	M	300							
хладагента	Перепад высот (нарвнутр	D.) M	40							
	Перепад высот (внутрвну	лр.) м	15							
Уровень звук. давления	Нагрев Номинал	ьный дБА	58 60			62	63			
Эпектропитание (У)			3380415B 50F1							

Охлаждение: Та 35 °C - LWE 18 °C (DT = 5 °C) Нагрев: Та DB / WB 7 °C / 6 °C - LWC 35 °C (DT = 5 °C) Производительность не гарантируется в диапазоне от -20 °C до -15 °C

БОЙЛЕР

модель			EKHTS200AC	EKHTS260A			
Объем воды		Л	200	260			
Температура воды		°C	75	75			
Габариты		MM	1335x600x695	1610x600x695			
Габариты встроенного внутреннего блока мм			2010x600x695	2285x600x695			
Bec	Вес кг		70	78			
Материал корпуса			Сталь				
Цвет			Серый металлик				
Материалы бака			Нержавеющая сталь				
Теплообменник	Материал		Ct	таль			
для горячей воды	Объем	Л	7.5	7.5			
(бытовые цели)	Поверхность теплообмена	M ²	1.56	1.56			
Параметры электро	питания		1~,220-240 В, 50 Гц				

77

ОПЦИИ ДЛЯ ЧИЛЛЕРОВ

	'							Встроенные компоненты	гидравлической системы			Уровень
Тип	Тип компрессора	Хладагент	Режим	Модельный ряд	Индекс производительности	Контакт для одинарного насоса	Контакт для сдвоенного насоса	Одинарный насос	Сдвоенный насос	Одинарный насос высокого напора	Буферный бак	Низкий шум
	<u> </u>					OPSC	OPTC	OPSP	OPTP	OPHP	Буферный бак OPBT STD STD •	OPLN
	SWING	R-410A	攀	EWAQ-ADVP	005-006-007			STD				
	SWING	N-4 IUM	1	EWYQ-ADVP	005-006-007			STD				
Da Go			攀	EWAQ-ACV3	009-010-011			STD				
С воздушным охлаждением конденсатора	· '	R-410A	40000	EWAQ-ACW1	009-011-013			STD				
age age	'	n-4 IUM	1	EWYQ-ACV3	009-010-011			STD				
M K	· '		₩	EWYQ-ACW1	009-011-013			STD				
lehw.	'			EUWAN-KBZW1	5-8-10-12-16-20-24							
lawt	SCROLL		攀	EUWAP-KBZW1	5-8-10-12-16-20-24					•		
M OX.	SUMULL			EUWAB-KBZW1	5-8-10-12-16-20-24					•	STD	
	'			EUWYN-KBZW1	5-8-10-12-16-20-24							
(A.2)	'		**	EUWYP-KBZW1	5-8-10-12-16-20-24					•		
CB	'			EUWYB-KBZW1	5-8-10-12-16-20-24					•	STD	
	'	R-410A	纝	EWAQ-DAYNN	080-100-130-150-180-210-240-260	•	•	•	•	•	•	•
		H-4 IUA	お高い	EWYQ-DAYNN	080-100-130-150-180-210-240-260	•	•	•	•	•	•	•
С водяным охлаждением конденсатора	SCROLL	R-407C	*•	EWWP-KBW1N	014-022-028-035-045-055-065							
Свыносным конденсатором	SCROLL	R-407C	攀	EWLP-KBW1N	012-020-026-030-040-055-065							

Personal personage remone yara general personage Court C	Описание	Код	EWAQ~BA		FWAD~C7	EWAD~CF	EWWO~B-	EWAD~D-	EWAD~E-	ERAD~E-	EWWD~G-XS	EWLD~G-SS	EWWD~I-XS	EWLD~I-SS	EWWD~FZXS	EWAD~C-	EWWD-J-SS	EWWD~H-	EWAQ-E-
These propregate without and according control and according to the control of	Описание	ПОД	EWYQ~BA	EWYD-BZ	LWAD-CZ	LWAD-CI	LWWQ-b-	LWAD-D-	LWAD-L	LIND-L	EWWD~G-SS	EWED-0-33	EWWD~I-SS	LWLD-1-33	LWWD-12A3	LWAD-C	EWLD-J-SS	LWWD-II-	EWAQ-F-
Secretary programmer and colors Church Chu	Полная рекуперация теплоты				Опция				Опция	Опция	Опция	NA	Опция (9)	NA		Опция			Опция
Processing Properties Among Control Processing Properties STD ST	Полная рекуперация теплоты для одного контура	02		Опция				Опция (1)											
Monte compared Com	Частичная рекуперация теплоты			Опция	Опция		Опция	Опция (1)	Опция	Опция	Опция	Опция	Опция	NA		Опция			Опция
Minor Langer Mino	Пускатель (прямой запуск)																		STD
Recommended states 68	Пуск звезда-треугольник	05				STD	STD	STD	STD	STD	STD	STD	STD	STD		STD	STD	STD	
Flancing Numbers 68 Organ Orga	Мягкий старт	06				Опция	Опция	Опция	Опция	Опция	Опция	Опция	Опция	Опция		Опция	Опция	Опция	Опция
Pubmished participation 1	Исполнение тепловой насос	07									Опция	NA	Опция	NA			Опция	Опция	
Finding per exemptox contents up per reger pright 1	Гликолевое исполнение	08	Опция	Опция	Опция	Опция	Опция	Опция	Опция	NA	Опция	Опция	Опция	Опция		Опция	Опция	NC/SO	Опция
Papers P	Двойная уставка	10		STD	STD	STD	STD	STD	STD	STD	STD	STD	STD	STD		STD	STD	STD	Опция
Note Compare State Sta	Тепловое реле компрессора	11			STD	Опция	Опция	Опция	Опция	Опция	Опция	Опция	Опция	Опция		Опция	Опция	Опция	Опция
Memorphase 14 STD STD Church	Предохранители цепи вентилятора с тепловым реле перегрузки	12		STD				STD	STD	STD						STD			
Copysion Companies	Контроль фаз	13		STD	STD	STD	STD	STD	STD	STD	STD	STD	STD	STD		STD	STD	STD	Опция
Cerewis exemplace-grown 16 Chaye Chaye	Инверторный пуск компрессора	14		STD	STD			Опция							STD		CF		
Flactoring trossupplies code 19	Ограничитель напряжения	15		Опция	Опция	Опция	Опция	Опция	Опция	Опция	Опция	Опция	Опция	Опция		Опция	Опция	Опция	Опция
Flactoring trossupplies code 19		-		Опция	Опция	Опция	Опция	Опция	Опция	Опция	Опция	Опция	Опция		Опция	Опция	Опция	Опция	Опция
Engrenom total Congesterior trans 19 Congesterior trans victual for perior supporterior 20 STD																			Опция
Consideration Congress with including that recognitions 21		19		Опция	Опция	Опция	Опция	Опция	Опция		Опция	Опция	Опция		STD	Опция	Опция	Опция	
Consumer Congression Congression (Congression Congression Congre	The state of the s	_																	STD
Incompanies Sangered gist exposite deput of cogenement may schall 22 22 23 24 25 25 25 25 25 25 25		_				STD									_	_	V	7.2	
Visingments - Sancqueid pare reported large conferencement may actability - Sancqueid pare reported large conferencement may actability - Sancqueid pare reported large conferencement conferencement - Sancqueid pare reported large conference pare reported large conferencement - Sancqueid pare reported large conference pare reported la	The second secon	_			-			\$11411 (E)										Опшия	
		_																	
Microgrames 1- Searcheal gira supposide again or dimensional congenerational 24															_				
Managements - Searoge-side grass upcorroll edgas or characterises and congenierement		_																	
Мотвернее осернение для инфектатора 26 0																			
Специальное соориением равного контура испарителя в давление 10 бар 27 STD		-																	
Мотолнение воденого контура исперителя на дваление 10 бар 27 10 10 10 10 10 10 10 1							Опшия				Опша	NΔ	Опшия	NΔ			Опшия		
Исполнение воденого контура испарителя на дваление 25 бар 28 Отция STD STD Опция Опция Опция Опция Опция Опция STD ST		-						STD									Опции		
Теппоизопиция исперителя 20 мм Среми вентияттор с внешими нагором 100 Га 30 Опция ВТД							310	JID			JID	JID		_				310	
Освеюй вентилятор с внешним напором 100 Па 30 CF CF Освей вентилятор с внешним нагором 250 Па 32 CF CF Петопозолиция ментилятор с полиженным дорожее шидма 34 STD (14) Onция NA Опция NA Опция NA Опция Опция NA STD (17)				Опшиа	STD	STD	Опшиа	Опшиа (2)	Опшиа	NΔ	Опшиа	Опшиа				STD	STD	STD	STD
Освеюй ввентилиятор с вчещиним напором 250 Па 32 Оприя Оприя Оприя Оприя Оприя Оприя Оприя NA Оприя Оприя Оприя Оприя Оприя NA Оприя Оприя Оприя NA Оприя Оприя NA Оприя<				Опции	UID	OID	Опции		Опции	11/1	Опции	Опции	Опции	Опции	UID	UID	UID	OID	OID
Теплоизопящия конденсатора 20 мм 33 Спция Опция Опция Опция NA Опция Опция Режим вентиятора с пониженным уровене шума 34 STD (14) Опция СР Опция Опция Опция NA Опция Опция Опция NA Опция NA STD STD (17) STD STD (17) STD STD (17) STD STD (17) STD Onция NA STD NA STD (17) STD STD (17) STD Onция NA STD (17) STD (17) STD Onция NA Onция NA STD (17) STD (17) </td <td></td> <td>_</td>																			_
Режим вентилятора с пониженным уровнем шума 34 STD (14) Опция							Onusa				Onus	NIA	Onusa	NIA	Onusa		Onusa	Onusa	-
Регулятор схорости вентилятора (отключение фаз) 35 STD (15) CF Присоединение по воде для конденсатора. 37 Onция Onция NA Onция NA STD STD (17) STD Опция NA Onция Onция NA Onция NA Onция Onция NA Onция NA Onция Onция Onция Onция Onция Onция Onция Onция Onция				CTD (14)			Опция				ИПДИЯ	IVA	Опция	INA	ИПЦИЯ		Опция	ОПЦИЯ	
Присоединение по воде для конденсатора типа Victaulic 36 Опщия Опция Опщия Опция Оп																			
Опанцевое присоединение по воде для конценсатора. 37				91D (12)			00000	UF			00000	NIA	00000	NIA	CTD		OTD (47)	CTD	
Конденсатор 3-заходный для морской воды с соединением типа victaulic. 38 а СГ СГ Опция Конденсатор 2-заходный для морской воды с соединением типа victaulic. 38 а СГ СГ Опция							Опция				ИППП	INA	Опция	INA	_		21D(11)	210	
Конденсатор 2-заходный для морской воды с соединением типа victaulic 38 Конденсатор 3-заходный для морской воды с соединением типа victaulic 39 Конденсатор 3-заходный для морской воды с фланцевым соединением 40a Конденсатор 2-заходный для морской воды с фланцевым соединением 40a Конденсатор 3-заходный для морской воды с фланцевым соединением 40 Конденсатор 3-заходный для морской воды с фланцевым соединением 40 Конденсатор 3-заходный для морской воды с фланцевым соединением 41 Устройство Speedtrol для работы при ниской температуре на- 42 Спция NA Спция (3) Спция Опция О		-																	
Конденсатор 3-ажодный для морской воды с фланцевым соединением типа victaulic 39 Конденсатор 3-ажодный для морской воды с фланцевым соединением 40 Конденсатор 3-ажодный для морской воды с фланцевым соединением 40 Конденсатор 3-ажодный для морской воды с фланцевым соединением 40 Конденсатор 3-ажодный для морской воды с фланцевым соединением 40 Конденсатор 3-ажодный для морской воды с фланцевым соединением 41 Конденсатор 3-ажодный для морской воды с фланцевым соединением 41 Конденсатор 3-ажодный для морской воды с фланцевым соединением 41 Конденсатор 3-ажодный для морской воды с фланцевым соединением 41 Конденсатор брееdroi для работы при ниской температуре на- 42 Опция NA Опция Опц																			
Конденсатор 1-заходный для морской воды с фланцевым соединением 40 мм																			
Конденсатор 2-заходный для морской воды с фланцевым соединением 40		-																	
Конденсатор 3-заходный для морской воды с фланцевым ссединением 41																			
Устройство Speedfrol для работы при нисжой температуре на- ружного воздуха до -18 °С 42 Опция NA Опция		_																	
ружного воздуха до -18 °C 42 Опция NA Опция Опц		41													Опция			Опция-NА	
Защита эмеевика испарителя 44 Опция Опц					Опция			Опция (3)	Опция	Опция									Опция
Конденсатор медь-медь 45 Опция Опци	Защита змеевика конденсатора			Опция	Опция	Опция		Опция	Опция	Опция						Опция			Опция
Конденсатор медь-медь с покрытием 46 Опция Опци	Защита змеевика испарителя				Опция												CF		Опция
Исполнение водяного контура конденсатора на давление 16 бар 47 STD STD NA STD NA STD STD (1) S	Конденсатор медь-медь	-		Опция	Опция	Опция		Опция	Опция	Опция						Опция			Опция
Исполнение водяного контура конденсатора на давление 16 бар 48 Опция	Конденсатор медь-медь с покрытием			Опция	Опция	Опция		Опция	Опция	Опция						Опция			Опция
Защитное покрытие Alucost pe6ep теплообменника 49 Опция NA Опция NA Опция Oпция Опция	Исполнение водяного контура конденсатора на давление 16 бар	47					STD				STD	NA	STD	NA	STD		STD (1)	STD	
Медно-нимеличевые трубы конденсатора 50 Опция Опция NA Опция NA Опция Опция Опция	Исполнение водяного контура конденсатора на давление 16 бар	48													Опция				
Медно-нимеличевые трубы конденсатора 50 Опция Опция NA Опция NA Опция Опция Опция		49		Опция	Опция	Опция		Опция	Опция	Опция						Опция			Опция
							Опция				Опция	NA	Опция	NA	Опция		Опция	Опция	
I NOHIBERCATOD OUROSAXOURBIN TREDETIAL TENNEDATIVO 4-0 C) 1 31 NC-5C)	Конденсатор однозаходный (перепад температур 4-8 °C)	51					1				STD		STD (9)	NA.	NC/SO		1	NC-SO	

Теплообменники применяются в данных моделях

- Группа 2: Вое другие модели Группа 2: Вое другие модели Группа 1 Группа 2: Опция 20: Недоступна В стандарте Опция 29: В стандарте Опция 29: В стандарте Опция 3. Опция 42 недоступна для EWAD-D-SX

Пожалуйста, обратите внимание, что спедующие опции доступны:
 Группа 1: EWAD180-200D-SL; EWAD180-190D-SR; EWAD210D-SX; EWAD200-210D-HS

^{4.} Опция 56 в стандарте для EWAD180-200D-SL; EWAD180-190D-SR; EWAD200-210D-HS

На стороне высокого давления манометр на каждом контуре
 * Низкий напор 8 метров, высокий напор 12 метров (номинальные условия)

^{*}Опции 80/81 недоступны для EWAD180-190D-SR; 78/79/80/81 недоступны для EWAD180-210D-SX 7. Опция 99 в стандарте для EWAD180-210D-SX

Недоступна для двух наименьших моделей
 Недоступна для моделей с высокой энергоэффективостью

^{10.} Бак поставляется отдельно

^{11.} Недоступны для моделей со стандартной энертоэффактивностью
13. Доступнь оталько для моделей ЕWD-BZ
14. Бесшумный режим вентимпора - опция для EWD-BZS
15. Только для моделей EWD-BZS. Тум водели EWD-BZSS - опция
16. Недоступны для модели EWD-BZS.

^{17.} Недоступна для моделей с выносным конденсатором

Доступны только для моделей с выносным конденсатором
 Опция 76 доступна в стандарте для моделей с низким/сверх низким уровнем шума

о давления	Температура воды на	выходе из испарителя		Электрические опции		Хлад	агент	Конденсатор
Вентиляторы высокого напора	Гликоль высокой температуры (до -5 °C)	Гликоль низкой температуры (до -10 °C)	Ленточный нагреватель испарителя	Главный выключатель	Амперметр/Вольтметр	Двойной разгрузочный клапан	Запорный клапан на всасывании	Решетки защиты конденсатора
OPHF	OPZH	OPZL	OP10	OP52	OP57	OP03	OP12	OPCG
			STD					
			STD					
			STD					
			STD					
			STD					
			STD					
•	•	•	•					
•	•	•	•					
•	•	•	•					
•	•	•	•					
•	•	•	•					
•	•	•	•					
		•	•		•	•	•(s)	•
		•	•	STD	•	•	•(s)	•
	•	•						
	•	•						
	Вентиляторы высокого напора ОРНF	Вентиляторы высокого напора ОРН ОРЕН ОРЕН ОРЕН ОРЕН ОРЕН ОРЕН ОРЕН О	Вентиляторы высокого напора Гликоль высокой температуры (до -5 °C) Гликоль ниской температуры (до -10 °C) ОРНF ОРZН ОРZL • • • •	Вентиляторы высокого напора Гликоль высокой температуры (до -5°C) Гликоль низкой температуры (до -10°C) Ленточный нагреватель испарителя ОРНГ ОРZH ОРZL ОР10 STD STD STD STD STD STD STD STD STD STD STD STD • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •	Вентиляторы высокого напора Гликоль высокой температуры (до -5 °C) Гликоль низкой температуры (до -10 °C) Ленточный нагреватель испарителя Главный выключатель ОРНГ ОР2Н ОР2L ОР10 ОР52 STD STD STD STD STD STD STD STD STD STD STD STD • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •	Вентиляторы высокого напора Глижоль высокой температуры (до -5°C) Глижоль нисжой температуры (до -10°C) Денточный нагреватель испарителя Главный выключатель Амперметр/Вольтметр ОРНГ ОРZН ОРЗО ОР57 ОР57 <td>Вентияторы высокого напора Гликоль высокой температуры (до -5 °C) Гликоль низкой температуры (до -10 °C) Ленточный нагреватель испарителя Главный выключатель АмперметрВольтметр Двойной разгрузочный клапан ОРНГ ОРЕН ОРЕН ОРЕД ОРЕД<td>Вентиляторы высокого напора Гликоль высокого температуры (до -5°C) Гликоль нижкой температуры (до -10°C) Ленточный нагреватель испарителя Главный выключатель выключатель выключатель выключатель испарителя Амперметр/Вольтметр Двойной разгрузочный клапан на всасывании ОРНГ ОР2Н ОР2L ОР10 ОР52 ОР57 ОР3 ОР12 STD STD</td></td>	Вентияторы высокого напора Гликоль высокой температуры (до -5 °C) Гликоль низкой температуры (до -10 °C) Ленточный нагреватель испарителя Главный выключатель АмперметрВольтметр Двойной разгрузочный клапан ОРНГ ОРЕН ОРЕН ОРЕД ОРЕД <td>Вентиляторы высокого напора Гликоль высокого температуры (до -5°C) Гликоль нижкой температуры (до -10°C) Ленточный нагреватель испарителя Главный выключатель выключатель выключатель выключатель испарителя Амперметр/Вольтметр Двойной разгрузочный клапан на всасывании ОРНГ ОР2Н ОР2L ОР10 ОР52 ОР57 ОР3 ОР12 STD STD</td>	Вентиляторы высокого напора Гликоль высокого температуры (до -5°C) Гликоль нижкой температуры (до -10°C) Ленточный нагреватель испарителя Главный выключатель выключатель выключатель выключатель испарителя Амперметр/Вольтметр Двойной разгрузочный клапан на всасывании ОРНГ ОР2Н ОР2L ОР10 ОР52 ОР57 ОР3 ОР12 STD STD

Описание	Код	EWAQ~BA EWYQ~BA	EWAD-BZ EWYD-BZ	EWAD~CZ	EWAD~CF	EWWQ~B-	EWAD~D-	EWAD~E-	ERAD~E-	EWWD~G-XS EWWD~G-SS	EWLD~G-SS	EWWD~I-XS EWWD~I-SS	EWLD~I-SS	EWWD~FZXS	EWAD~C-	EWWD-J-SS EWLD-J-SS	EWWD~H-	EWAQ-E EWAQ-F
Конденсатор двухзаходный (перепад ртемператур 4-8 °C)	52											STD (11)	NA	STD		STD (17)	STD	
Конденсатор однозаходный (перепад ртемператур 9-15 °C)	53											NC/SO/NA	NA	STD				
Конденсатор трехзаходный	53b											.,,		NA/NC/SO			NA	
Конденсатор четырехзаходный	54											NC/SO/NA	NA	,,				
Реле перепада давления воды на конденсаторе	55											Опция	121	STD			Опция	
Реле перепада давления воды на испарителе	56						Опция (4)					Опция	Опция	STD		Опция	Опция	
Электрический нагреватель для испарителя	57	Опция	STD	STD	STD	Опция	STD	STD	NA			Опции	Опции	OID	STD	Origina	Origini	STD
Реле протока воды через испаритель	58	Опции	Опция	Опция	Опция	Опция	Опция	Опция	NA.	Опция	Опция	Опция	Опция	Опция	Опция	STD	Опция	STD
Реле протока воды через конденсатор	59		Опции	Опции	Опцил	Опцил	Опции	Опции	INA	NA NA	NA NA	NA NA	NA NA	Опция	Опции	OID	Опция	OID
Электронный расширительный вентиль	60		STD	STD	STD	STD	STD	STD	NA.	STD	STD	STD	STD	STD	STD	STD	STD	STD
Запорный вентиль на линии нагнетания	61		STD	STD	STD	Опция	STD	STD	STD	STD	STD	Опция	Опция	310	STD	STD	STD	Опция
	62		STD		Опция		STD	STD	STD	STD	STD			00000	Опция	STD	_	
Запорный вентиль на линии всасывания	_			Опция		Опция				_		Опция	Опция	Опция			Опция	Опция
Манометры на линии высокого давления	63		Опция	Опция	Опция	Опция	Опция (5)	Опция	Опция	Опция	Опция	Опция	Опция	Опция	Опция	Опция	Опция	Опция
Манометры на линии низкого давления	64			Опция	Опция	Опция	Опция		NA	Опция	Опция	Опция	Опция	Опция	Опция	Опция	Опция	Опция
Дополнительная ступень уменьшения производительности	65																	
Датчик температуры наружного воздуха	67		STD	STD	STD		STD	STD	STD						STD			STD
с задатчиком значения температуры						O.E.D.				OTT (1//	OWN	OTD	0.00	0.70		OTE	070	
Счетчик часов работы	68		STD	STD	STD	STD	STD	STD	STD	STD (11)	STD	STD	STD	STD	STD	STD	STD	STD
Главный аварийный выключатель	69		STD	STD	STD	STD	STD	STD	STD	STD	STD	STD	STD	STD	STD	STD	STD	STD
Контейнерное исполнение	71		Опция	Опция		Опция	Опция	Опция	Опция	Опция	Опция	Опция	Опция	Опция	Опция	Опция	Опция	Опция
Приспособление для автопогрузчика	72									Опция	Опция					Опция		
Упаковка в деревянный ящик	74																	
Резиновые виброизоляторы	75		Опция	Опция	Опция	Опция	Опция	Опция	Опция	Опция	Опция	Опция	Опция	Опция	Опция	Опция	Опция	Опция
Комплекс снижения уровня шума*	76					Опция				Опция	Опция	Опция	Опция	Опция		Опция	Опция	
Пружинные виброизоляторы	77		Опция	Опция	Опция		Опция	Опция	Опция						Опция			Опция
Одинарный центробежный насос (низконапорный)	78	Опция	Опция	Опция	Опция		Опция	Опция	NA						Опция			Опция
Одинарный центробежный насос (высоконапорный)	79	Опция	Опция	Опции	Origin		Опция	Опция	NA.						Ongran			Опция
Сдвоенный центробежный насос (низконапорный)	80	Опции	Опция	Опция	Опция		Опция (6)	Опция (8)	NA.						Опция			Опция
Сдвоенный центробежный насос (высоконапорный)	81		Опция	Опции	Опции		Опция (6)	Опция (8)	NA.						Опции			Опция
Тестовые испытания	82		Опции			CF	CF CF	CF CF	CF	CF	CF	CF	CF	CF		CF	Опция	Опции
Бак-аккумулятор без корпуса (500 л)	83		Опция			UI UI	Опция	Опция	NA NA	UI UI	UI	UI	UI	U		UI	Опция	Опция
	84		Опция				Опция	Опция	NA NA									Опция
Бак-аккумулятор без корпуса (1000 л)																		
Бак-аккумулятор в корпусе RAL7032 (500 л)	87		Опция				Опция	Опция	NA									Опция
Бак-аккумулятор в корпусе RAL7032 (1000 л)	88		Опция				Опция	Опция	NA									Опция
Акустические испытания	89					CF	CF	CF	CF	CF	CF	CF	CF	CF		CF		
Задатчик значения требуемого предела и	90		Опция	STD	STD	STD	STD	STD	STD	STD	STD	STD	STD	STD	STD	STD	STD	Опция
сигнал аварии с внешнего устройства																		
Предохранительный клапан	91		Опция	Опция	Опция	Опция	Опция	Опция	Опция	Опция	Опция	Опция	Опция	STD	Опция	Опция	STD	Опция
Устройство для работы при низких температурах для 1-го контура	93																	
Устройство для работы при низких температурах для 2-х контуров	94																	
Предохранители цепи питания компрессора	95			Опция	Опция		Опция	Опция	Опция						Опция	Опция	Опция	Опция
Предохранители цепи питания вентилятора	96			STD	STD		STD	STD	STD						STD			Опция
Главный выключатель	97		STD (16)	STD	STD	STD	STD	STD	STD	STD	STD	STD	STD		STD	STD	STD	STD
Аварийная остановка	98			STD	STD	STD				STD	STD	STD	STD		STD	STD	STD	
Регулятор скорости вентилятора	99		STD (16)	Опция	STD		Опция (7)	Опция	Опция						Опция			Опция
Емкость для хладагента	100		5.5 (10)	Опция/СЕ	1.5		5q.m (1)		24						Опция			U. Hapiti
Подсоединение воды к испарителю	101		SO	SO	SO		SO								Опция			
Реле пробоя на землю	102		- 00	Опция	Опция	Опция	- 50			Опция	Опция	Опция	Опция		Опция	Опция	Опция	Опция
Однозаходный испаритель	103			Опция	Опция	Спции				Опция	ОПЦИИ	STD	STD	NC/SO	Опция	Опция	NC/SO	Опция
												JID	JIU	STD			STD	
Двухзаходный испаритель	103a																	
Трехзаходный испаритель	103b													NA/NC/SO			NA NA	
Фланцевое соединение для испарителя	104													Опция			Опция	
Жидкостной ресивер	105										Опция		Опция			NA		
Быстрый перезапуск	110			Опция	Опция										Опция			
Устройство для работы при высоких температурах	111																Опция	
Транспортное приспособление	112	Опция	Опция	Опция	Опция	Опция	Опция	Опция	Опция	Опция	Опция	Опция	Опция	Опция	Опция	Опция	Опция	Опция
Гликолевое исполнение		Опция																
Функция оптимизированного «фрикулинга»	113				Опция													
Водяной фильтр																		STD

ОПЦИИ ДЛЯ ФАНКОЙЛОВ

FWM-DT/DF, FWL-DT/DF, FWV-DT/DF	01	02	25	03	35	04	06	08	10
Описание опций	01	02	20	03	33	04	00	00	10
Дополнительный однорядный теплообменник	ESR	H02A6	ESRI	103A6	ESRH06A6 ESRH10				10A6
Электронагреватель	EEH01A6	EEH02A6	EEH	D3A6	EEH06A6 EEH1				10A6
2-трубный 3-ходовой клапан 230 В			E2MV03A6			E2MV	/06A6	E2MV	10A6
4-трубный 3-ходовой клапан 230 В			E4MV03A6			E4MV	/06A6	E4MV	10A6
2-трубный 3-ходовой клапан 230 В упрощенный			E2MVD03A6			E2MVI	D06A6	E2MVI	010A6
4-трубный 3-ходовой клапан 230 В упрощенный			E4MVD03A6			E4MVI	D06A6	E4MVI	010A6
2-ходовой клапан теплообменника 230 B				E2MV207A6				E2MV2	210A6
2-ходовой клапан дополнительного теплообменника 230 B					E2MV207A6				
Термостат останова вентилятора					YFSTA6				
Воздухозаборная и возухораспределительная решетки	EAID	F02A6	EAID	F03A6		EAIDF06A6 EAID			
Опорные стойки			ESFV06A6		ESFV	10A6			
Опорные стойки +решетка	ESF\	/G02A6	ESFV	G03A6		ESFVG06A6		ESFVG	310A6
Воздухозабор свежего воздуха	EF/	A02A6	EFA	03A6		EFA06A6		EFA1	0A6
Задняя панель	ER	/02A6	ERV	03A6		ERV06A6		ERV1	0A6
Электромеханический пульт управления					ECFWMB6				
Электронные пульты управления "Standard" version					FWEC1A				
Электронные пульты управления "Advanced" version					FWEC2A,				
Электронные пульты управления "Advanced plus" version					FWEC3A				
Комплект для установки контроллера на фанкойле					FWECKA				
Датчик температуры					FWTSKA				
Датчик относительной влажности					FWHSKA				
Комлект для настенного монтажа электронного пульта					FWFCKA				
Интерфейс с блоком питания для управления до 4-х блоков					EPIMSB6				
Горизонтальный дренажный поддон		EDPHA6							
Вертикальный дренажный поддон					EDPVA6				

ПРИМЕЧАНИЕ

- FWM(L,V)-DTN (без клапана) мастерплан;
- FWM(L,V)-DTV (со встроенным 3-х ходовым клапаном) под заказ;
- Электрический нагреватель не может быть смонтирован в корпусе 2-х трубного блока с 4-х рядным теплообменником и в корпусе четырехтрубного блока.
- Электронные пульты управления FWEC1A, FWEC2A и FWEC3A не подходят для управления 24 В 2(3)-х ходовым клапаном, поэтому в блоках с 24 В 2-х и 3-х ходовыми клапанами электронные пульты не должны использоваться.
- Для управления 2-х и 3-х ходовыми клапанами с пропорциональным приводом подходит только электронный пульт FWEC3A.

FWM-DT/DF, FWL-DT/DF, FWV-DT/DF	Наименование	Установка	Установка на месте	FWV	FWL	FWM
Описание опций	паименование	на заводе	монтажа	FWV	FWL	FWW
Дополнительный однорядный теплообменник	ESRH-A6	да	да	Х	х	Х
Электронагреватель	EEH-A6	да	да	Х	х	Х
2-трубный 3-ходовой клапан 230 В	E2MV-A6	да	да	Х	х	х
4-трубный 3-ходовой клапан 230 В	E4MV-A6	да	да	Х	х	Х
2-трубный 3-ходовой клапан 230 В упрощенный	E2MVD-A6	да	да	Х	х	х
4-трубный 3-ходовой клапан 230 В упрощенный	E4MVD-A6	да	да	Х	х	х
2-ходовой клапан теплообменника 230 В	E2MV2-A6	да	да	Х	х	Х
2-ходовой клапан дополнительного теплообменника 230 B	E2MV2-A6	да	да	Х	х	Х
Термостат останова вентилятора	YFSTA6	да	да	Х	х	х
Воздухозаборная и возухораспределительная решетки	EAIDF-A6	нет	да		-	х
Опорные стойки	ESFV-A6	нет	да	Х	-	Х
Опорные стойки +решетка	ESFVG-A6	нет	да	Х		-
Воздухозабор свежего воздуха	EFA-A6	нет	да	Х	-	-
Задняя панель	ERPV-A6	нет	да	Х	Х	-
Пленум (адаптер для круглых воздуховодов)	EPCC-A6	нет	да		-	Х
Электромеханическое управление	ECFWMB6	да	да	Х		
Электронные пульты управления "Standard" version	FWEC1A	да	да	Х	х	х
Электронные пульты управления "Advanced" version	FWEC2A	да	да	Х	х	х
Электронные пульты управления "Advanced plus" version	FWEC3A	да	да	Х	х	Х
Комплект для установки контроллера	FWECKA	да	да	Х	Х	
Датчик температуры	FWTSKA	да	да	Х	Х	Х
Датчик относительной влажности	FWHSKA	да	да	Х	х	Х
Комлект для настенного монтажа электронного пульта	FWFCKA	нет	да	Х	х	х
Интерфейс с блоком питания для управления до 4-х блоков	EPIMSB6	нет	да	Х	х	х
Горизонтальный дренажный поддон	EDPHB6	нет	да	Х	х	х
Вертикальный дренажный поддон	EDPVB6	нет	да	-	Х	х

FWB-BT	2-4		_	7	8-10		
Описание опций	Ζ-4				0-10		
Дополнительный теплообменник	EAH04/	A6	EAH	D7A6	EAH10A6		
3-ходовой клапан дополнительного теплообменника		E2MV	307A6		E2MV310A6		
3-ходовой клапан теплообменника			Монтируется на заводе				
2-ходовой клапан дополнительного теплообменника		E2MV207A6		E2MV	/210A6		
2-ходовой клапан теплообменника		Монтируется на заводе					
Электрический нагреватель			Монтируется на заводе				
Термостат останова вентилятора			YFSTA				
Модуль электропитания				EF	PIB6		
Интерфейс с блоком питания			EPIMSB6				
Электронные пульты управления	FWEC1A,FWEC2A, FWEC3A						
Датчик температуры (комплект)	FWTSKA						
Датчик относительной влажности (комплект)	FWHSKA						
Комплект для установки контроллера на фанкойле			FWECKA				

ПРИМЕЧАНИЕ

- FWB-BTV (со встроенным 3-х ходовым клапаном) мастер план;
 FWB-BTN (пустой) под заказ.

FWE-CT/CF							10			
Описание опций	02	02 03 04 06 07 08								
Комплект 2-х ходового клапана (2-х тр.)		EK2MV2B10C5								
Комплект 3-х ходового клапана (2-х тр.)		EK2MV3B10C5								
Комплект 2-х ходового клапана (4-х тр.)		EK4M/2B10C5								
Комплект 3-х ходового клапана (4-х тр.)				EK4MV3B10C5						
Электронные пульты управления		FV	/EC1A (стандарт)*, FWEC2/	A (версия "advanced"), FWI	EC3A (версия "advanced p	lus")				
Комплект для настенного монтажа				FWECKA						
Датчик температуры		FWTSKA								
Датчик относительной влажности		FWHSKA								
Интерфейс с блоком питания для управления до 4-х блоков		EPIMSB6								

ПРИМЕЧАНИЕ

 $^{^{\}star}$ FWEC1A (стандарт) не применяется для FWE-CF.

FWC-BT/BF, FWF-BT/BF,	EWO DT/DE	FWE DT/DE
Описание опций	FWC-BT/BF	FWF-BT/BF
Декоративная панель (PAL 9010 – серые уплотнения) 4-х поточный	·	BYFQ60B
Декоративная панель (PAL 9010 – серые уплотнения) Стандартный вариант. Круговой поток	BYCQ140CW1	
Декоративная панель (PAL 9010 – белые уплотнения) Белый вариант. Круговой поток	BYCQ140CW1W	
Заглушка на выпускном отверстии	RDBHQ55C140	KDBH44BA60
Декоративная вставка между блоком и панелью		KDBQ44B60
Фильтр с длительным сроком службы	KAFP551K160	KAFQ441BA60
Комплект для впуска свежего воздуха" Прямая установка"		KDDQ44XA60
Комплект для впуска свежего воздуха (20% свежего воздуха)" Прямая установка"	KDDQ55C140-1 /KDDQ55C140-2 (20)	
Пульт управления инфракрасный (охлаждение/нагрев)	BRC7F532F (18)	BRC7E530 (18)
Пульт управления инфракрасный (только охлаждение)	BRC7F533F (18)	BRC7E531 (18)
Пульт управления проводной	BRC315	D7 (4)
Центральный пульт управления	DC\$302C	A51 (5)
Монтажная коробка с заземлением (3 блока)	KJB:	311A
Двухпозиционный контроллер ВКЛ/ВЫКЛ	DCS301E	MA51 (9)
Монтажная коробка с заземлением (2 блока)	KJB2	212A
Таймер	DST301BA	51 (6) (9)
Проводной адаптер для доп. электр. оборудования	KRP2A52 (7) (12)	KRP2A52 (9) (12)
Проводной адаптер для доп. электр. оборудования	KRP4AA53 (7) (12)	KRP4AA53 (9) (12)
Установочная коробка для адаптера PCB	KRP1H98 (13)	KRP1BA101 (14)
Датчик дистанционного управления	KRCS01-4	KRCS01-1
Универсальный графический контроллер	DCS601C51	C (6) (11)
Монтажная коробка с заземлением	KJB4	111A
Плата для подключения по шине MOD-bus	EKFCMBCE	37 (8) (12)
2-х ходовой клапан ВКЛ/ВЫКЛ	EKMV2C09B7 (8) (10) (15)	EKMV2C09B7 (8) (10) (16)
3-х ходовой клапан ВКЛ/ВЫКЛ	EKMV3C09B7 (8) (10) (15)	EKMV3C09B7 (8) (10) (16)
Плата управления клапаном	EKRP	1011
Комплект для дистанционного ВКП/ВЫКЛ и принудительного ВЫКЛ		EKROROA (17)

ОПЦИИ ДЛЯ ФАНКОЙЛОВ

FWF-CT				00			00			04	
Описание опций Описание опций Описание опций Описание опций								04			
Декоративная панель							DCP600BT				
3-х ходовой вкл/выкл.							MCKCW2T3VN				
Упрощенный	Только охлаждение						SRC-COA				
проводной пульт управления	Охлаждение / нагрев						SRC-HPA				
Проводной пульт управления							MERCA				
Пульт управления беспроводной	Охлаждение / нагрев						WRC-HPC				
FWD-AT/AF									40	46	40
Описание опций			'	1	6		8	10	12	16	18
Электронагреватель малой мощности		(4)	EDEH	EDEH04A6 EDEHS06A6 EDEHS10A6 EDEHS12A6						EDEH	IS18A6
Электронагреватель большой мощност	1	(1)	EDEH	EDEH04A6 EDEHB06A6			EDEHB10A6	EDEHB12A6	EDEH	IB18A6	
2-трубный 3-ходовой клапан			ED2MV04A6	ED2MV04A6 ED2MV10A6 ED2MV12A6 ED2MV12A6						IV18A6	
4-трубный 3-ходовой клапан		(2)	ED4MV04A6	ED4MV04A6 ED4MV10A6 2xED2MV12A6						2xED2	MV18A6
Вертикальный дренажный поддон					Е	DDPV10A6				EDDPV18A6	
Горизонтальный дренажный поддон					E	DPH10A6				EDDPH18A6	
Термостат останова вентилятора				YFSTA6							
Воздухозабор свежего воздуха				EFA04A6		EFA	06A6 EFA	10A6	EFA12A6	EF/	18A6
Электронные пульты управления (3)							FWEC1A,FWEC2A, FWEC3A				
Модуль электропитания							EPIB6				
Интерфейс с блоком питания							EPIMSB6				
Датчик температуры							FWTSKA				
Датчик относительной влажности							FWHSKA				
FWT-CT				0	03		04		05		06
Описание опций					03		04		03	<u>'</u>	JO
Проводной пульт управлений							MERCA				
Упрощенный пульт управления (С/О) (т	олько охлаждение)						SRC-COA				
Упрощенный пульт управления (H/P) (о:	клаждение/нагрев)						SRC-HPA				
Инфракрасный пульт управления (Н/Р)	(охлаждение/нагрев)				WRC-HPC						

ПРИМЕЧАНИЕ

- 1. Требуется электронный контроллер.
- 2. Для FWD 12,16, 18AT/AF поставляется только клапаны с соответствующими сервоприводами.
- 3. Датчик воды включен
- 4. Требуется распределительная коробка с заземлением КЈВ212А, Если провод дистанционного управления необходимо прокладывать в стене.
- Требуется распределительная коробка с заземлением КЈВЗ11А.
- 6. Требуется распределительная коробка КЈВ411А.
- 7. Требуется установочный блок KRP1H98 (FWC)
- 8. Требуется установочный блок KRP1BA101 (FWF)
- 9. При монтаже в стене требуется распределительная коробка КЈВ212А.
- 10. Требуется плата управления ЕКЯР1С11
- 11. Универсальный графический контроллер:
 - не разрешается его одновременное использование в системе с фанкойлами и VRV блоками
 - не может быть использовано в комбинациях фанкойлов, использующих протокол MOD-bus
 - Airnet и телефонное соединение невозможно
- 12. Только 1 из этих 4-х опций может быть установлена на одном внутреннем блоке
- 13. Максимально одна коробка КRP1H98 может быть установлена на блоке. Максимально две PCB могут быть установлены в коробке KRP1H98 (FWC).
- 14. Максимально две коробки KRP1BA101 могут быть установлены на блоке. Максимально одна PCB может быть установлена в коробке KRP1BA101 (FWF)
- 15. 2-трубный элемент: 1 набор клапанов+1 корпус для платы KRP1H98+1 плата управления клапаном ЕКRP1C11.
 - 4-трубный элемент: 2 набора клапанов+1 корпус для платы KRP1H98+1 плата управления клапаном EKRP1C11. (FWC)
- 16. 2-трубный элемент: 1 набор клапанов+1 корпус для платы KRP1BA101+1 плата управления клапаном EKRP1C11.
 - 4-трубный элемент : 2 набора клапанов+1 корпус для платы KRP1BA101+1 плата управления клапаном EKRP1C11. (FWF)
- 17. Эта опция необходима для кабеля Т1 Т2
- 18. Можно изменить режим работы, однако это не повлияет на температуру воды. (Сигнал обратной связи к источнику воды не подается). Невозможно выбрать установку "автоматический поток воздуха". Можно выбрать работу в "сухом режиме", эта функция недоступна для FWC.
- 19. Все опции поставляются в виде набора
- 20. Для каждого блока требуются обе части комплекта впускного отверстия для свежего воздуха (KDDQ55C140-1 /KDDQ55C140-2).

ОБЩИЕ СВЕДЕНИЯ

Электропитание

Т1 = 3 ~, 220 В, 50 Гц

V1 = 1 ~, 220-240 В, 50 Гц

 $VE = 1 \sim$, 220-240 B, 50 Γ u / 60 Γ u

V3 = 1 ~, 230 B, 50 Гц

 $VM = 1 \sim$, 220~240 B / 220~230 B, 50 Γ u / 60 Γ u $W1 = 3 \sim$, 400 В, 50 Гц

 $Y1 = 3 \sim$, 400 В, 50 Гц

Условия испытаний

ТЕПЛОВОЙ НАСОС

1) Номинальная мощность в режиме охлаждения:	
температура внутри помещения	27 °C DB / 19 °C WB
температура наружного воздуха	35 ℃ DB
длина труб с хладагентом	7,5 м - 8 м, система VRV
перепад высот	0 м
2) Номинальная мощность в режиме обогрева:	
температура внутри помещения	20 °C DB
температура наружного воздуха	7 °C DB / 6 °C WB
длина труб с хладагентом	7,5 м - 8 м, система VRV
перепад высот	0 м

ТОЛЬКО ОХЛАЖДЕНИЕ

1) Номинальная мощность в режиме охлаждения:	
температура внутри помещения	27 °C DB / 19 °C WB
температура наружного воздуха	35 ℃ DB
длина труб с хладагентом	7,5 м - 8 м, система VRV
перепад высот	0 M

ЧИЛЛЕРЫ

	только охлаждение	испаритель: 12 °C / 7 °C	TOC: 35 °C DB
С воздушным охлаждением	x	испаритель: 12 °C / 7 °C	TOC: 35 °C
	тепловой насос	конденсатор: 40 °С / 45 °С	TOC: 7 °C DB / 6 °C WB
		испаритель: 12 °C / 7 °C	
^	только охлаждение	конденсатор: 30 °С / 35 °С	
С водяным охлаждением	707. Va afarras	испаритель: 12 °C / 7 °C	
	только обогрев	конденсатор: 40 °С / 45 °С	
D		испаритель: 12 °C / 7 °C	
Выносной конденсатор		температура конденсации: 45 °C / температура жидкости: 40 °C	
D		температура кипения: 5 °С	TOC: 35 °C
Выносной испаритель	мощность охлаждения / входная мощность	перегрев: 10 °C	
		температура в помещении. 27 °C / 19 °C	
Фанкойпы	охлаждение	температура воды на входе: 7 °С / 12 °С	
PAHKONI Ibi	-6	температура в помещении. 20 °C	
	обогрев	температура воды на входе: 50 °C (двухтрубн.) / 70 °C (четырехтрубн.)	

Уровень звукового давления измерен с помощью микрофона, расположенного на определенном расстоянии от блока. Это относительная величина, которая зависит от указанного расстояния и акустической среды (условия измерения: указаны в сборниках технических данных).

Уровень звуковой мощности является абсолютной величиной, указывающей «мощность», производимую источником звука. Более подробная информация приведена в технических данных на оборудование.

НОМЕНКЛАТУРА КЛИМАТИЧЕСКОЙ TEXHUKU DAIKIN

Split, Multi Split, **Super Multi Plus**

Бытовые кондиционеры

FTXR-E настенный

FTXG-J

настенный

FTXS-K, CTXS-K настенный

FTX-JV, FTYN-GX настенный

FTXS-EVM настенный

FTXS-G настенный

Sky

Кондиционеры

FCQN-EXV

для коммерческого применения

FFQ-C кассетный (600х600)

FFQN-CXV кассетный (600х600)

FCQ(H)G-F

кассетный

кассетный

VRV, HRV

Центральная интеллектуальная система кондиционирования

FXAQ-P FXFQ-A настенный кассетный с

круговым потоком

FXZQ-A кассетный (600x600)

FXZQ-M9 кассетный (600x600)

FXCQ-A кассетный двухпоточный

однопоточный

FXHQ-A подпотолочный

FXUQ-A подпотолочный четырехпоточный

FXLQ-P напольный

FXNQ-P напольный (встраиваемый)

FXDQ-A канальный низконапорный (уменьшенной толщины)

Package A/C

Шкафные кондиционеры

FDQ-B канальный

UATYP-AY1 крышный кондиционер

UATYQ-C крышный кондиционер

Центральные кондиционеры

D-AHU Professional

Fan coils

Фанкойлы

FWV-DT/DF FWM-DT/DF напольный

FWL-DT/DF подпотолочный

FWB-BT канальный средненапорный

FWE-CT/CF канальный средненапорный

FWC-В кассетный **FWF-В** кассетный (600x600)

FWF-C кассетный (600х600)

Chillers

Чиллеры

ALTHERMA

EWAQ*AC/D EWYQ*AC/D мини-чиллер

EUWA*-KBZW EUWY*-KBZW

EWAQ-BA* EWYQ-BA*

EHMC гидромодуль

EWLP*KBW EWWP*KBW

Network Solution

Сетевые системы управления

Intelligent Manager

FTX-GV, FTXS-FVM настенный

FTXN-L, FTYN-L настенный

FVXG-K напольный

FLXS-B универсальный

FVXS-F напольный

FDXS-F канальный

RXS-K

MXS

RXYSQ-P8

FDMQN-CXV кассетный

FBQ-C8, FDQ-C канальный

FUQ-C подпотолочный четырехпоточный

FHQ-C подпотолочный

FLQN-EXV подпотолочный

RQ-DX

RYN-CXV

RZQSG-L

RZQG-L

RQ-B, RR-B

RZQ-C ERQ-A

RQCEQ-P

FXDQ-M канальный низконапорный

FXMQ-M, FXMQ-MF канальный для подачи наружного воздуха

VKM-G(M)

VAM

HXY-A внутренний блок ГВС (до +45 °C)

HXHD125A внутеренний блок ГВС (до +80 °C)

RWEYQ-P(R) с водяным охлаждением

RXYCQ-A

RTSYQ-PA

RXYQ-T RYYQ-T

Центральные кондиционеры

D-AHU Easy

D-AHU Energy

EWWD-H-*

EWWD-FZ

EWWD-G-* EWLD-I-*

ERQ-A комплект для центральных кондиционеров

FWT-CT настенный

FWD-A высоконапорный напольно-подпотолочный

EWAQ-E-* EWAQ-F-*

EWWD-I-*

EWWD-J-* EWLD-J-*

EWLD-G-*

EWWQ-B-*

EWYD-BZ* EWAD-BZ*

EWAD-E-* ERAD-E

EWAD-C-* EWAD-CZ-*, EWAD-CF-*

EWAD-D-*

EWAQ*DAYNN EWYQ*DAYNN

DWME

DWSC/DWDC

BACnet & MODbus Gateway